Edit model card

xlm-roberta-base-finetuned-JaQuAD

This model is a fine-tuned version of xlm-roberta-base on the JaQuAD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7495

Model description

More information needed

Intended uses

import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer

model_name = "thkkvui/xlm-roberta-base-finetuned-JaQuAD"
model = (AutoModelForQuestionAnswering.from_pretrained(model_name))
tokenizer = AutoTokenizer.from_pretrained(model_name)

text = "2015年9月1日、私は横浜へ車で出かけました。映画を観た後に中華街まで電車で行き、昼ご飯は重慶飯店で中華フルコースを食べました。"
questions= ["どこへ出かけた?", "電車に乗る前は何をしていた?", "重慶飯店で何を食べた?", "いつ横浜に出かけた?"]

for question in questions:
    
    inputs = tokenizer.encode_plus(question, text, add_special_tokens=True, return_tensors="pt")
    
    with torch.no_grad():
        output = model(**inputs)

    answer_start = torch.argmax(output.start_logits)
    answer_end = torch.argmax(output.end_logits)

    answer_tokens = inputs.input_ids[0, answer_start : answer_end + 1]
    answer = tokenizer.decode(answer_tokens)

    print(f"質問: {question} -> 回答: {answer}")

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.8661 1.0 1985 0.8036
0.5348 2.0 3970 0.7495

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train thkkvui/xlm-roberta-base-finetuned-JaQuAD