Edit model card

image/png

Model Details

Model Name: thesven/Phi3-mini-128k-guanaco
Base Model: microsoft/Phi-3-mini-128k-instruct
Fine-tuning Method: Supervised Fine-Tuning (SFT)
Dataset: Guanaco Clean
Training Data: A subset of filtered chats from the Guanaco dataset where the total input length was equal or less than 512 tokens.
Training Duration: 8 hours
Hardware: Nvidia RTX A4500
Epochs: 3

Training Procedure

This model was finetuned on chat sequences to improve it's overall chat performance.

Intended Use

This model is designed to improve instruction-following capabilities, particularly for code-related tasks.

Getting Started

Instruct Template

<|system|> {system_message} <|end|> <|user|> {Prompt) <|end|> <|assistant|>

Transfromers

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name_or_path = "thesven/Phi3-mini-128k-guanaco"

# BitsAndBytesConfig for loading the model in 4-bit precision
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    device_map="auto",
    trust_remote_code=False,
    revision="main",
    quantization_config=bnb_config
)
model.pad_token = model.config.eos_token_id

prompt_template = '''
<|system|>
You are an expert developer. Please help me with any coding questions.<|end|>
<|user|>
Create a function to get the total sum from an array of ints.<|end|>
<|assistant|>
'''

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=256)

generated_text = tokenizer.decode(output[0, len(input_ids[0]):], skip_special_tokens=True)
print(generated_text)
Downloads last month
9
Safetensors
Model size
3.82B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train thesven/Phi3-mini-128k-guanaco

Collection including thesven/Phi3-mini-128k-guanaco