TenyxChat-8x7B-v1 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
fe36e14 verified
|
raw
history blame
8.44 kB
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- tenyx-fine-tuning
- dpo
- tenyxchat
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: TenyxChat-8x7B-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.71
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tenyx/TenyxChat-8x7B-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.76
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tenyx/TenyxChat-8x7B-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tenyx/TenyxChat-8x7B-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.42
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tenyx/TenyxChat-8x7B-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tenyx/TenyxChat-8x7B-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tenyx/TenyxChat-8x7B-v1
name: Open LLM Leaderboard
---
# TenyxChat: Language Model Alignment using Tenyx Fine-tuning
Introducing TenyxChat-8x7B-v1, part of our TenyxChat series trained to function as useful assistants through preference tuning, using Tenyx's recently released advanced fine-tuning technology ([VentureBeat article](https://venturebeat.com/ai/tenyx-aims-to-fix-llms-catastrophic-forgetting-problem/)). Our model is trained using the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) framework on the open-source AI feedback dataset [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
We fine-tune [Mixtral-8x7B-Instruct-v0.1](https://arxiv.org/pdf/2401.04088.pdf) with our proprietary approach ([blog](https://www.tenyx.com/post/forgetting-and-toxicity-in-llms-a-deep-dive-on-fine-tuning-methods), [service](https://www.tenyx.com/fine-tuning)),
similar to that of our [7B model](https://huggingface.co/tenyx/TenyxChat-7B-v1), and show an increase in [MT-Bench](https://arxiv.org/abs/2306.05685) scores.
Our approach aims to mitigate forgetting in LLMs in a computationally efficient manner, thereby enabling continual fine-tuning capabilities without altering the pre-trained output distribution.
TenyxChat-8x7B-v1 was trained using eight A100s (80GB) for about eight hours, with a training setup obtained from HuggingFaceH4 ([GitHub](https://github.com/huggingface/alignment-handbook)).
# Model details
- Model type: Fine-tuned Mixture Of Expert 8x7B model for chat.
- License: Apache 2.0
- Base model: [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
- Demo: [spaces/tenyx/TenyxChat-8x7B-v1](https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1)
## Usage
Our model uses a simple chat template based on Mixtral-8x7B-Instruct-v0.1 . The chat template usage with a Hugging face generation example is shown below.
### Chat Template (Jinja)
```rust
{{ bos_token }}
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ '[INST]' + message['content'] + '[/INST]' }}
{% elif message['role'] == 'system' %}
{{ '[INST]' + message['content'] + '[/INST]' }}
{% elif message['role'] == 'assistant' %}
{{ message['content'] + eos_token }}
{% endif %}
{% endfor %}
```
### Hugging face Example
```python
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="tenyx/TenyxChat-8x7B-v1", torch_dtype=torch.bfloat16, device_map="auto")
messages = [
{"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."},
{"role": "user", "content": "Hi. I would like to make a hotel booking."},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=512, do_sample=False)
```
### Output
```
<s>[INST]You are a friendly chatbot who always responds in the style of a pirate.[/INST]
[INST]Hi. I would like to make a hotel booking.[/INST]
Ahoy there, me hearty! Ye wish to make a hotel booking, do ye? Well, let's set sail on this voyage of reservations and see what we can find!
What's the name of the port (hotel) and the dates of our journey (check-in and check-out)? I'll do me best to assist ye!
```
# Performance
At the time of release (Jan 2024), TenyxChat-8x7B-v1 is the highest-ranked model, only superseded by GPT4, on the MT-Bench evaluation available for download and commercial use.
## MT-Bench
MT-Bench is a benchmark made up of 80 high-quality multi-turn questions. These questions fall into eight categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The chat models are rated using GPT-4 on a scale of 1 to 10, with higher values corresponding to better responses.
| Model | First Turn | Second Turn | Average |
| --- | --- | --- | --- |
| GPT-4* | 8.95625 | 9.02500 | 8.990625 |
| TenyxChat-8x7B-v1 | 8.63750 | 8.16250 | 8.400000 |
| Mixtral (reproduced) | 8.49375 | 8.00000 | 8.246875 |
| GPT-3.5-turbo* | 8.07500 | 7.81250 | 7.943750 |
*values reported on [lmsys](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) ChatBot Arena
![hexplot.png](assets/hexplot.png)
# Limitations
TenyxChat-8x7B-v1, like other language models, has its own set of limitations. We haven’t fine-tuned the model explicitly to align with **human** safety preferences. Therefore, it is capable of producing undesirable outputs, particularly when adversarially prompted. From our observation, the model still tends to struggle with tasks that involve reasoning and math questions. In some instances, it might generate verbose or extraneous content.
# License
TenyxChat-8x7B-v1, similar to Mixtral-8x7B-Instruct-v0.1 , is distributed under the Apache License 2.0.
# Citation
If you use TenyxChat-8x7B-v1 for your research, cite us as
```
@misc{tenyxchat2024,
title={TenyxChat: Language Model Alignment using Tenyx Fine-tuning},
author={Tenyx},
year={2024},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tenyx__TenyxChat-8x7B-v1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |72.72|
|AI2 Reasoning Challenge (25-Shot)|69.71|
|HellaSwag (10-Shot) |87.76|
|MMLU (5-Shot) |71.12|
|TruthfulQA (0-shot) |65.42|
|Winogrande (5-shot) |81.22|
|GSM8k (5-shot) |61.11|