metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: fine-tuned-augmented
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: custom_dataset_augmented
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.23333333333333334
- name: F1
type: f1
value: 0.04545454545454546
fine-tuned-augmented
This model is a fine-tuned version of google/vit-base-patch16-224 on the custom_dataset_augmented dataset. It achieves the following results on the evaluation set:
- Loss: 2.2134
- Accuracy: 0.2333
- F1: 0.0455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1