Angle_BERT / README.md
technicolor's picture
Update README.md
05bc480 verified
metadata
tags:
  - mteb
model-index:
  - name: .\results\technicolor\Angle_BERT
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 77.94029850746269
          - type: ap
            value: 41.462497073772475
          - type: f1
            value: 71.91276160766711
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 75.998675
          - type: ap
            value: 70.68601139811975
          - type: f1
            value: 75.80419607148225
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 37.184000000000005
          - type: f1
            value: 36.927927910871034
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 18.208
          - type: map_at_10
            value: 31.217
          - type: map_at_100
            value: 32.504
          - type: map_at_1000
            value: 32.543
          - type: map_at_20
            value: 32.048
          - type: map_at_3
            value: 26.790000000000003
          - type: map_at_5
            value: 29.176000000000002
          - type: mrr_at_1
            value: 18.990000000000002
          - type: mrr_at_10
            value: 31.539
          - type: mrr_at_100
            value: 32.818999999999996
          - type: mrr_at_1000
            value: 32.857
          - type: mrr_at_20
            value: 32.363
          - type: mrr_at_3
            value: 27.003
          - type: mrr_at_5
            value: 29.518
          - type: ndcg_at_1
            value: 18.208
          - type: ndcg_at_10
            value: 38.881
          - type: ndcg_at_100
            value: 44.931
          - type: ndcg_at_1000
            value: 45.864
          - type: ndcg_at_20
            value: 41.823
          - type: ndcg_at_3
            value: 29.675
          - type: ndcg_at_5
            value: 33.964
          - type: precision_at_1
            value: 18.208
          - type: precision_at_10
            value: 6.358
          - type: precision_at_100
            value: 0.914
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_20
            value: 3.752
          - type: precision_at_3
            value: 12.684000000000001
          - type: precision_at_5
            value: 9.687
          - type: recall_at_1
            value: 18.208
          - type: recall_at_10
            value: 63.585
          - type: recall_at_100
            value: 91.39399999999999
          - type: recall_at_1000
            value: 98.506
          - type: recall_at_20
            value: 75.036
          - type: recall_at_3
            value: 38.051
          - type: recall_at_5
            value: 48.435
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 35.32543411547368
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 27.664108097727595
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 51.337125683605656
          - type: mrr
            value: 64.09422679505782
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 75.49675324675324
          - type: f1
            value: 75.43051473772864
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 30.952117397946154
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 24.80565572031388
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 18.148
          - type: map_at_10
            value: 23.986
          - type: map_at_100
            value: 25.028
          - type: map_at_1000
            value: 25.163999999999998
          - type: map_at_20
            value: 24.526
          - type: map_at_3
            value: 21.822
          - type: map_at_5
            value: 22.933
          - type: mrr_at_1
            value: 23.319000000000003
          - type: mrr_at_10
            value: 28.944
          - type: mrr_at_100
            value: 29.837999999999997
          - type: mrr_at_1000
            value: 29.914
          - type: mrr_at_20
            value: 29.441
          - type: mrr_at_3
            value: 26.943
          - type: mrr_at_5
            value: 27.944999999999997
          - type: ndcg_at_1
            value: 23.319000000000003
          - type: ndcg_at_10
            value: 28.249000000000002
          - type: ndcg_at_100
            value: 33.219
          - type: ndcg_at_1000
            value: 36.374
          - type: ndcg_at_20
            value: 29.933
          - type: ndcg_at_3
            value: 24.845
          - type: ndcg_at_5
            value: 26.14
          - type: precision_at_1
            value: 23.319000000000003
          - type: precision_at_10
            value: 5.351
          - type: precision_at_100
            value: 0.971
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_20
            value: 3.2620000000000005
          - type: precision_at_3
            value: 11.922
          - type: precision_at_5
            value: 8.555
          - type: recall_at_1
            value: 18.148
          - type: recall_at_10
            value: 36.144999999999996
          - type: recall_at_100
            value: 58.204
          - type: recall_at_1000
            value: 79.828
          - type: recall_at_20
            value: 42.245
          - type: recall_at_3
            value: 25.701
          - type: recall_at_5
            value: 29.636000000000003
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 14.248
          - type: map_at_10
            value: 19.534000000000002
          - type: map_at_100
            value: 20.358
          - type: map_at_1000
            value: 20.464
          - type: map_at_20
            value: 19.965
          - type: map_at_3
            value: 17.881
          - type: map_at_5
            value: 18.773999999999997
          - type: mrr_at_1
            value: 18.025
          - type: mrr_at_10
            value: 23.265
          - type: mrr_at_100
            value: 24.054000000000002
          - type: mrr_at_1000
            value: 24.122
          - type: mrr_at_20
            value: 23.702
          - type: mrr_at_3
            value: 21.624
          - type: mrr_at_5
            value: 22.5
          - type: ndcg_at_1
            value: 18.025
          - type: ndcg_at_10
            value: 23
          - type: ndcg_at_100
            value: 27.016000000000002
          - type: ndcg_at_1000
            value: 29.751
          - type: ndcg_at_20
            value: 24.415
          - type: ndcg_at_3
            value: 20.222
          - type: ndcg_at_5
            value: 21.379
          - type: precision_at_1
            value: 18.025
          - type: precision_at_10
            value: 4.35
          - type: precision_at_100
            value: 0.796
          - type: precision_at_1000
            value: 0.127
          - type: precision_at_20
            value: 2.662
          - type: precision_at_3
            value: 9.809
          - type: precision_at_5
            value: 6.955
          - type: recall_at_1
            value: 14.248
          - type: recall_at_10
            value: 29.646
          - type: recall_at_100
            value: 47.527
          - type: recall_at_1000
            value: 66.468
          - type: recall_at_20
            value: 34.873
          - type: recall_at_3
            value: 21.366
          - type: recall_at_5
            value: 24.738
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 19.834
          - type: map_at_10
            value: 27.569
          - type: map_at_100
            value: 28.601
          - type: map_at_1000
            value: 28.705000000000002
          - type: map_at_20
            value: 28.194000000000003
          - type: map_at_3
            value: 25.352999999999998
          - type: map_at_5
            value: 26.512
          - type: mrr_at_1
            value: 23.26
          - type: mrr_at_10
            value: 30.406
          - type: mrr_at_100
            value: 31.291000000000004
          - type: mrr_at_1000
            value: 31.371
          - type: mrr_at_20
            value: 30.941000000000003
          - type: mrr_at_3
            value: 28.485
          - type: mrr_at_5
            value: 29.444
          - type: ndcg_at_1
            value: 23.26
          - type: ndcg_at_10
            value: 31.959
          - type: ndcg_at_100
            value: 36.747
          - type: ndcg_at_1000
            value: 39.47
          - type: ndcg_at_20
            value: 33.992
          - type: ndcg_at_3
            value: 27.839999999999996
          - type: ndcg_at_5
            value: 29.593999999999998
          - type: precision_at_1
            value: 23.26
          - type: precision_at_10
            value: 5.436
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_20
            value: 3.235
          - type: precision_at_3
            value: 12.684999999999999
          - type: precision_at_5
            value: 8.853
          - type: recall_at_1
            value: 19.834
          - type: recall_at_10
            value: 42.531
          - type: recall_at_100
            value: 63.963
          - type: recall_at_1000
            value: 84.174
          - type: recall_at_20
            value: 50.101
          - type: recall_at_3
            value: 31.179000000000002
          - type: recall_at_5
            value: 35.567
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 9.263
          - type: map_at_10
            value: 12.104
          - type: map_at_100
            value: 12.736
          - type: map_at_1000
            value: 12.836
          - type: map_at_20
            value: 12.415
          - type: map_at_3
            value: 10.891
          - type: map_at_5
            value: 11.443
          - type: mrr_at_1
            value: 9.831
          - type: mrr_at_10
            value: 12.856000000000002
          - type: mrr_at_100
            value: 13.492
          - type: mrr_at_1000
            value: 13.587
          - type: mrr_at_20
            value: 13.178
          - type: mrr_at_3
            value: 11.62
          - type: mrr_at_5
            value: 12.218
          - type: ndcg_at_1
            value: 9.831
          - type: ndcg_at_10
            value: 14.224
          - type: ndcg_at_100
            value: 17.78
          - type: ndcg_at_1000
            value: 21.078
          - type: ndcg_at_20
            value: 15.329999999999998
          - type: ndcg_at_3
            value: 11.691
          - type: ndcg_at_5
            value: 12.692
          - type: precision_at_1
            value: 9.831
          - type: precision_at_10
            value: 2.26
          - type: precision_at_100
            value: 0.43299999999999994
          - type: precision_at_1000
            value: 0.077
          - type: precision_at_20
            value: 1.384
          - type: precision_at_3
            value: 4.7829999999999995
          - type: precision_at_5
            value: 3.458
          - type: recall_at_1
            value: 9.263
          - type: recall_at_10
            value: 20.293
          - type: recall_at_100
            value: 37.507000000000005
          - type: recall_at_1000
            value: 63.727000000000004
          - type: recall_at_20
            value: 24.424
          - type: recall_at_3
            value: 13.215
          - type: recall_at_5
            value: 15.661
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 3.936
          - type: map_at_10
            value: 5.976
          - type: map_at_100
            value: 6.619999999999999
          - type: map_at_1000
            value: 6.737
          - type: map_at_20
            value: 6.271
          - type: map_at_3
            value: 5.179
          - type: map_at_5
            value: 5.5
          - type: mrr_at_1
            value: 5.348
          - type: mrr_at_10
            value: 7.954
          - type: mrr_at_100
            value: 8.683
          - type: mrr_at_1000
            value: 8.782
          - type: mrr_at_20
            value: 8.336
          - type: mrr_at_3
            value: 7.027
          - type: mrr_at_5
            value: 7.449999999999999
          - type: ndcg_at_1
            value: 5.348
          - type: ndcg_at_10
            value: 7.832999999999999
          - type: ndcg_at_100
            value: 11.567
          - type: ndcg_at_1000
            value: 15.213
          - type: ndcg_at_20
            value: 8.996
          - type: ndcg_at_3
            value: 6.164
          - type: ndcg_at_5
            value: 6.726
          - type: precision_at_1
            value: 5.348
          - type: precision_at_10
            value: 1.617
          - type: precision_at_100
            value: 0.42300000000000004
          - type: precision_at_1000
            value: 0.08800000000000001
          - type: precision_at_20
            value: 1.126
          - type: precision_at_3
            value: 3.1919999999999997
          - type: precision_at_5
            value: 2.363
          - type: recall_at_1
            value: 3.936
          - type: recall_at_10
            value: 11.711
          - type: recall_at_100
            value: 28.875
          - type: recall_at_1000
            value: 56.267
          - type: recall_at_20
            value: 15.989999999999998
          - type: recall_at_3
            value: 7.087000000000001
          - type: recall_at_5
            value: 8.436
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 13.367999999999999
          - type: map_at_10
            value: 19.301
          - type: map_at_100
            value: 20.374
          - type: map_at_1000
            value: 20.516000000000002
          - type: map_at_20
            value: 19.828000000000003
          - type: map_at_3
            value: 17.345
          - type: map_at_5
            value: 18.39
          - type: mrr_at_1
            value: 17.324
          - type: mrr_at_10
            value: 23.383000000000003
          - type: mrr_at_100
            value: 24.296
          - type: mrr_at_1000
            value: 24.375
          - type: mrr_at_20
            value: 23.866
          - type: mrr_at_3
            value: 21.238
          - type: mrr_at_5
            value: 22.336
          - type: ndcg_at_1
            value: 17.324
          - type: ndcg_at_10
            value: 23.345
          - type: ndcg_at_100
            value: 28.645
          - type: ndcg_at_1000
            value: 31.902
          - type: ndcg_at_20
            value: 25.113999999999997
          - type: ndcg_at_3
            value: 19.731
          - type: ndcg_at_5
            value: 21.271
          - type: precision_at_1
            value: 17.324
          - type: precision_at_10
            value: 4.495
          - type: precision_at_100
            value: 0.874
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_20
            value: 2.791
          - type: precision_at_3
            value: 9.464
          - type: precision_at_5
            value: 6.909999999999999
          - type: recall_at_1
            value: 13.367999999999999
          - type: recall_at_10
            value: 31.749
          - type: recall_at_100
            value: 55.078
          - type: recall_at_1000
            value: 77.88000000000001
          - type: recall_at_20
            value: 38.098
          - type: recall_at_3
            value: 21.356
          - type: recall_at_5
            value: 25.433
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 10.152
          - type: map_at_10
            value: 14.658999999999999
          - type: map_at_100
            value: 15.522
          - type: map_at_1000
            value: 15.653
          - type: map_at_20
            value: 15.087
          - type: map_at_3
            value: 13.099
          - type: map_at_5
            value: 13.941
          - type: mrr_at_1
            value: 13.128
          - type: mrr_at_10
            value: 18.035999999999998
          - type: mrr_at_100
            value: 18.911
          - type: mrr_at_1000
            value: 19.003999999999998
          - type: mrr_at_20
            value: 18.487000000000002
          - type: mrr_at_3
            value: 16.381
          - type: mrr_at_5
            value: 17.277
          - type: ndcg_at_1
            value: 13.128
          - type: ndcg_at_10
            value: 17.949
          - type: ndcg_at_100
            value: 22.579
          - type: ndcg_at_1000
            value: 26.064
          - type: ndcg_at_20
            value: 19.476
          - type: ndcg_at_3
            value: 14.975
          - type: ndcg_at_5
            value: 16.273
          - type: precision_at_1
            value: 13.128
          - type: precision_at_10
            value: 3.3329999999999997
          - type: precision_at_100
            value: 0.683
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_20
            value: 2.129
          - type: precision_at_3
            value: 7.154000000000001
          - type: precision_at_5
            value: 5.251
          - type: recall_at_1
            value: 10.152
          - type: recall_at_10
            value: 24.933
          - type: recall_at_100
            value: 45.584
          - type: recall_at_1000
            value: 70.7
          - type: recall_at_20
            value: 30.361
          - type: recall_at_3
            value: 16.570999999999998
          - type: recall_at_5
            value: 19.901
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 10.82375
          - type: map_at_10
            value: 15.058583333333331
          - type: map_at_100
            value: 15.841083333333335
          - type: map_at_1000
            value: 15.952749999999998
          - type: map_at_20
            value: 15.447583333333334
          - type: map_at_3
            value: 13.618000000000002
          - type: map_at_5
            value: 14.369499999999999
          - type: mrr_at_1
            value: 13.36475
          - type: mrr_at_10
            value: 17.77841666666667
          - type: mrr_at_100
            value: 18.528416666666665
          - type: mrr_at_1000
            value: 18.612583333333333
          - type: mrr_at_20
            value: 18.169416666666667
          - type: mrr_at_3
            value: 16.304166666666667
          - type: mrr_at_5
            value: 17.065166666666666
          - type: ndcg_at_1
            value: 13.36475
          - type: ndcg_at_10
            value: 18.002833333333335
          - type: ndcg_at_100
            value: 22.082583333333332
          - type: ndcg_at_1000
            value: 25.149166666666666
          - type: ndcg_at_20
            value: 19.33575
          - type: ndcg_at_3
            value: 15.334249999999999
          - type: ndcg_at_5
            value: 16.45558333333333
          - type: precision_at_1
            value: 13.36475
          - type: precision_at_10
            value: 3.2900000000000005
          - type: precision_at_100
            value: 0.6327499999999999
          - type: precision_at_1000
            value: 0.10600000000000001
          - type: precision_at_20
            value: 2.032666666666666
          - type: precision_at_3
            value: 7.209416666666667
          - type: precision_at_5
            value: 5.204416666666666
          - type: recall_at_1
            value: 10.82375
          - type: recall_at_10
            value: 24.346166666666665
          - type: recall_at_100
            value: 43.067916666666676
          - type: recall_at_1000
            value: 65.63275
          - type: recall_at_20
            value: 29.279916666666665
          - type: recall_at_3
            value: 16.74383333333333
          - type: recall_at_5
            value: 19.682583333333334
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 8.212
          - type: map_at_10
            value: 11.457
          - type: map_at_100
            value: 12.033000000000001
          - type: map_at_1000
            value: 12.113999999999999
          - type: map_at_20
            value: 11.744
          - type: map_at_3
            value: 10.365
          - type: map_at_5
            value: 10.969
          - type: mrr_at_1
            value: 9.815999999999999
          - type: mrr_at_10
            value: 13.471
          - type: mrr_at_100
            value: 14.019
          - type: mrr_at_1000
            value: 14.097999999999999
          - type: mrr_at_20
            value: 13.745
          - type: mrr_at_3
            value: 12.449
          - type: mrr_at_5
            value: 12.97
          - type: ndcg_at_1
            value: 9.815999999999999
          - type: ndcg_at_10
            value: 13.724
          - type: ndcg_at_100
            value: 16.817
          - type: ndcg_at_1000
            value: 19.442
          - type: ndcg_at_20
            value: 14.725
          - type: ndcg_at_3
            value: 11.700000000000001
          - type: ndcg_at_5
            value: 12.598
          - type: precision_at_1
            value: 9.815999999999999
          - type: precision_at_10
            value: 2.393
          - type: precision_at_100
            value: 0.428
          - type: precision_at_1000
            value: 0.07100000000000001
          - type: precision_at_20
            value: 1.434
          - type: precision_at_3
            value: 5.624
          - type: precision_at_5
            value: 3.9570000000000003
          - type: recall_at_1
            value: 8.212
          - type: recall_at_10
            value: 18.87
          - type: recall_at_100
            value: 33.527
          - type: recall_at_1000
            value: 53.989
          - type: recall_at_20
            value: 22.631
          - type: recall_at_3
            value: 13.056000000000001
          - type: recall_at_5
            value: 15.425
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 5.359
          - type: map_at_10
            value: 7.7170000000000005
          - type: map_at_100
            value: 8.222
          - type: map_at_1000
            value: 8.312999999999999
          - type: map_at_20
            value: 7.961
          - type: map_at_3
            value: 6.969
          - type: map_at_5
            value: 7.3870000000000005
          - type: mrr_at_1
            value: 6.9510000000000005
          - type: mrr_at_10
            value: 9.697
          - type: mrr_at_100
            value: 10.26
          - type: mrr_at_1000
            value: 10.337
          - type: mrr_at_20
            value: 9.989
          - type: mrr_at_3
            value: 8.792
          - type: mrr_at_5
            value: 9.307
          - type: ndcg_at_1
            value: 6.9510000000000005
          - type: ndcg_at_10
            value: 9.472999999999999
          - type: ndcg_at_100
            value: 12.414
          - type: ndcg_at_1000
            value: 15.122
          - type: ndcg_at_20
            value: 10.366999999999999
          - type: ndcg_at_3
            value: 8.071
          - type: ndcg_at_5
            value: 8.717
          - type: precision_at_1
            value: 6.9510000000000005
          - type: precision_at_10
            value: 1.7930000000000001
          - type: precision_at_100
            value: 0.40099999999999997
          - type: precision_at_1000
            value: 0.077
          - type: precision_at_20
            value: 1.158
          - type: precision_at_3
            value: 3.923
          - type: precision_at_5
            value: 2.8770000000000002
          - type: recall_at_1
            value: 5.359
          - type: recall_at_10
            value: 12.992999999999999
          - type: recall_at_100
            value: 26.854
          - type: recall_at_1000
            value: 46.888999999999996
          - type: recall_at_20
            value: 16.287
          - type: recall_at_3
            value: 8.919
          - type: recall_at_5
            value: 10.684000000000001
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 9.667
          - type: map_at_10
            value: 12.515
          - type: map_at_100
            value: 13.200000000000001
          - type: map_at_1000
            value: 13.311
          - type: map_at_20
            value: 12.837000000000002
          - type: map_at_3
            value: 11.298
          - type: map_at_5
            value: 11.937000000000001
          - type: mrr_at_1
            value: 11.567
          - type: mrr_at_10
            value: 14.940999999999999
          - type: mrr_at_100
            value: 15.661
          - type: mrr_at_1000
            value: 15.751999999999999
          - type: mrr_at_20
            value: 15.283
          - type: mrr_at_3
            value: 13.511000000000001
          - type: mrr_at_5
            value: 14.308000000000002
          - type: ndcg_at_1
            value: 11.567
          - type: ndcg_at_10
            value: 14.869
          - type: ndcg_at_100
            value: 18.709999999999997
          - type: ndcg_at_1000
            value: 21.826999999999998
          - type: ndcg_at_20
            value: 16.067
          - type: ndcg_at_3
            value: 12.428
          - type: ndcg_at_5
            value: 13.542000000000002
          - type: precision_at_1
            value: 11.567
          - type: precision_at_10
            value: 2.64
          - type: precision_at_100
            value: 0.507
          - type: precision_at_1000
            value: 0.08800000000000001
          - type: precision_at_20
            value: 1.609
          - type: precision_at_3
            value: 5.628
          - type: precision_at_5
            value: 4.216
          - type: recall_at_1
            value: 9.667
          - type: recall_at_10
            value: 19.677
          - type: recall_at_100
            value: 37.668
          - type: recall_at_1000
            value: 60.687000000000005
          - type: recall_at_20
            value: 24.236
          - type: recall_at_3
            value: 13.173000000000002
          - type: recall_at_5
            value: 15.808
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 11.129999999999999
          - type: map_at_10
            value: 15.881
          - type: map_at_100
            value: 16.759
          - type: map_at_1000
            value: 16.903000000000002
          - type: map_at_20
            value: 16.284000000000002
          - type: map_at_3
            value: 14.23
          - type: map_at_5
            value: 15.035000000000002
          - type: mrr_at_1
            value: 14.229
          - type: mrr_at_10
            value: 19.028
          - type: mrr_at_100
            value: 19.811999999999998
          - type: mrr_at_1000
            value: 19.905
          - type: mrr_at_20
            value: 19.412
          - type: mrr_at_3
            value: 17.26
          - type: mrr_at_5
            value: 18.060000000000002
          - type: ndcg_at_1
            value: 14.229
          - type: ndcg_at_10
            value: 19.325
          - type: ndcg_at_100
            value: 23.817
          - type: ndcg_at_1000
            value: 27.407999999999998
          - type: ndcg_at_20
            value: 20.612
          - type: ndcg_at_3
            value: 16.248
          - type: ndcg_at_5
            value: 17.352
          - type: precision_at_1
            value: 14.229
          - type: precision_at_10
            value: 3.834
          - type: precision_at_100
            value: 0.822
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_20
            value: 2.401
          - type: precision_at_3
            value: 7.707999999999999
          - type: precision_at_5
            value: 5.731
          - type: recall_at_1
            value: 11.129999999999999
          - type: recall_at_10
            value: 26.397
          - type: recall_at_100
            value: 47.616
          - type: recall_at_1000
            value: 73.15700000000001
          - type: recall_at_20
            value: 31.508999999999997
          - type: recall_at_3
            value: 17.368
          - type: recall_at_5
            value: 20.287
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 6.5680000000000005
          - type: map_at_10
            value: 10.004
          - type: map_at_100
            value: 10.639999999999999
          - type: map_at_1000
            value: 10.717
          - type: map_at_20
            value: 10.259
          - type: map_at_3
            value: 8.984
          - type: map_at_5
            value: 9.613
          - type: mrr_at_1
            value: 7.579
          - type: mrr_at_10
            value: 11.360000000000001
          - type: mrr_at_100
            value: 12.024
          - type: mrr_at_1000
            value: 12.104
          - type: mrr_at_20
            value: 11.652999999999999
          - type: mrr_at_3
            value: 10.32
          - type: mrr_at_5
            value: 10.967
          - type: ndcg_at_1
            value: 7.579
          - type: ndcg_at_10
            value: 12.084
          - type: ndcg_at_100
            value: 15.68
          - type: ndcg_at_1000
            value: 18.139
          - type: ndcg_at_20
            value: 13.001999999999999
          - type: ndcg_at_3
            value: 10.096
          - type: ndcg_at_5
            value: 11.183
          - type: precision_at_1
            value: 7.579
          - type: precision_at_10
            value: 1.978
          - type: precision_at_100
            value: 0.40499999999999997
          - type: precision_at_1000
            value: 0.065
          - type: precision_at_20
            value: 1.201
          - type: precision_at_3
            value: 4.621
          - type: precision_at_5
            value: 3.327
          - type: recall_at_1
            value: 6.5680000000000005
          - type: recall_at_10
            value: 17.209
          - type: recall_at_100
            value: 34.412
          - type: recall_at_1000
            value: 53.827000000000005
          - type: recall_at_20
            value: 20.604
          - type: recall_at_3
            value: 11.935
          - type: recall_at_5
            value: 14.615
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 3.466
          - type: map_at_10
            value: 6.311
          - type: map_at_100
            value: 7.385
          - type: map_at_1000
            value: 7.596
          - type: map_at_20
            value: 6.844
          - type: map_at_3
            value: 5.115
          - type: map_at_5
            value: 5.636
          - type: mrr_at_1
            value: 7.818
          - type: mrr_at_10
            value: 13.528
          - type: mrr_at_100
            value: 14.814
          - type: mrr_at_1000
            value: 14.902999999999999
          - type: mrr_at_20
            value: 14.283999999999999
          - type: mrr_at_3
            value: 11.249
          - type: mrr_at_5
            value: 12.307
          - type: ndcg_at_1
            value: 7.818
          - type: ndcg_at_10
            value: 9.936
          - type: ndcg_at_100
            value: 15.748000000000001
          - type: ndcg_at_1000
            value: 20.355
          - type: ndcg_at_20
            value: 11.927
          - type: ndcg_at_3
            value: 7.340000000000001
          - type: ndcg_at_5
            value: 8.089
          - type: precision_at_1
            value: 7.818
          - type: precision_at_10
            value: 3.3550000000000004
          - type: precision_at_100
            value: 0.9610000000000001
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_20
            value: 2.511
          - type: precision_at_3
            value: 5.494000000000001
          - type: precision_at_5
            value: 4.417
          - type: recall_at_1
            value: 3.466
          - type: recall_at_10
            value: 13.292000000000002
          - type: recall_at_100
            value: 34.287
          - type: recall_at_1000
            value: 61.207
          - type: recall_at_20
            value: 19.014
          - type: recall_at_3
            value: 7.066
          - type: recall_at_5
            value: 9.028
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 45.21
          - type: f1
            value: 40.27450017657594
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 68.848
          - type: ap
            value: 63.2883584195492
          - type: f1
            value: 68.6836564154069
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 85.37847697218423
          - type: f1
            value: 84.92640989123367
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 64.50524395804834
          - type: f1
            value: 48.40917698378292
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.32145258910558
          - type: f1
            value: 64.84562142367274
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.6186953597848
          - type: f1
            value: 70.54134651579527
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 27.349141993223746
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 25.585510809207832
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 40.32381150443673
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 45.985786847845056
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 70.58830468830689
          - type: mrr
            value: 89.4269474171435
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.56039603960396
          - type: cos_sim_ap
            value: 82.80827567304317
          - type: cos_sim_f1
            value: 76.10350076103501
          - type: cos_sim_precision
            value: 77.2399588053553
          - type: cos_sim_recall
            value: 75
          - type: dot_accuracy
            value: 99.31980198019802
          - type: dot_ap
            value: 63.62227490198173
          - type: dot_f1
            value: 60.08492569002123
          - type: dot_precision
            value: 64.02714932126696
          - type: dot_recall
            value: 56.599999999999994
          - type: euclidean_accuracy
            value: 99.58514851485148
          - type: euclidean_ap
            value: 84.43639703406805
          - type: euclidean_f1
            value: 77.52928647497338
          - type: euclidean_precision
            value: 82.91571753986332
          - type: euclidean_recall
            value: 72.8
          - type: manhattan_accuracy
            value: 99.58316831683169
          - type: manhattan_ap
            value: 84.30772142229371
          - type: manhattan_f1
            value: 77.64584408879712
          - type: manhattan_precision
            value: 80.25613660618997
          - type: manhattan_recall
            value: 75.2
          - type: max_accuracy
            value: 99.58514851485148
          - type: max_ap
            value: 84.43639703406805
          - type: max_f1
            value: 77.64584408879712
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 48.256973284963735
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 28.872051407552323
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 40.992315303011075
          - type: mrr
            value: 41.398027013835836
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 67.0849609375
          - type: ap
            value: 11.788791268631641
          - type: f1
            value: 50.9803202223727
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 57.57498585172609
          - type: f1
            value: 57.91311800407575
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 33.06505289570024
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.71580139476664
          - type: cos_sim_ap
            value: 66.15526088864542
          - type: cos_sim_f1
            value: 62.3031151557578
          - type: cos_sim_precision
            value: 55.84605731018616
          - type: cos_sim_recall
            value: 70.44854881266491
          - type: dot_accuracy
            value: 81.99320498301246
          - type: dot_ap
            value: 59.10143958693731
          - type: dot_f1
            value: 59.58787878787878
          - type: dot_precision
            value: 55.11210762331839
          - type: dot_recall
            value: 64.85488126649076
          - type: euclidean_accuracy
            value: 83.59063002920665
          - type: euclidean_ap
            value: 65.63819065809086
          - type: euclidean_f1
            value: 61.41935483870967
          - type: euclidean_precision
            value: 55.29039070749736
          - type: euclidean_recall
            value: 69.07651715039577
          - type: manhattan_accuracy
            value: 83.6263932765095
          - type: manhattan_ap
            value: 65.69964834245273
          - type: manhattan_f1
            value: 61.52737752161382
          - type: manhattan_precision
            value: 56.45658880564125
          - type: manhattan_recall
            value: 67.59894459102902
          - type: max_accuracy
            value: 83.71580139476664
          - type: max_ap
            value: 66.15526088864542
          - type: max_f1
            value: 62.3031151557578
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.99821477083091
          - type: cos_sim_ap
            value: 84.27684726247264
          - type: cos_sim_f1
            value: 76.53120888758953
          - type: cos_sim_precision
            value: 72.83667223149693
          - type: cos_sim_recall
            value: 80.62057283646443
          - type: dot_accuracy
            value: 87.04738619164047
          - type: dot_ap
            value: 80.98829705864014
          - type: dot_f1
            value: 74.43375169234146
          - type: dot_precision
            value: 70.9225298096367
          - type: dot_recall
            value: 78.31074838312288
          - type: euclidean_accuracy
            value: 87.69744246516863
          - type: euclidean_ap
            value: 83.50528467088635
          - type: euclidean_f1
            value: 75.65629784532656
          - type: euclidean_precision
            value: 73.45370168950764
          - type: euclidean_recall
            value: 77.99507237449954
          - type: manhattan_accuracy
            value: 87.6916210657042
          - type: manhattan_ap
            value: 83.49074793688219
          - type: manhattan_f1
            value: 75.60462282612708
          - type: manhattan_precision
            value: 72.63568641362184
          - type: manhattan_recall
            value: 78.8266091777025
          - type: max_accuracy
            value: 87.99821477083091
          - type: max_ap
            value: 84.27684726247264
          - type: max_f1
            value: 76.53120888758953

Embedding model trained on google-bert/bert-base-uncased with the AnglE-optimized Text Embeddings