Transformers
PyTorch
Safetensors
English
Inference Endpoints
tdh87's picture
Add model files from NousResearch_Yarn-Solar-10b-64k
69fdc45
|
raw
history blame
3.5 kB
metadata
datasets:
  - emozilla/yarn-train-tokenized-32k-mistral
metrics:
  - perplexity
library_name: transformers
license: apache-2.0
language:
  - en

Model Card: Yarn-Solar-10b-64k

Preprint (arXiv)
GitHub yarn

Model Description

Yarn-Solar-10b-64k is a state-of-the-art language model for long context, further pretrained on two billion long context tokens using the YaRN extension method. It is an extension of SOLAR-10.7B-v1.0 and supports a 64k token context window.

To use, pass trust_remote_code=True when loading the model, for example

model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Solar-10b-64k",
  attn_implementation="flash_attention_2",
  torch_dtype=torch.bfloat16,
  device_map="auto",
  trust_remote_code=True)

In addition you will need to use the latest version of transformers

pip install git+https://github.com/huggingface/transformers

Benchmarks

Long context benchmarks:

Model Context Window 4k PPL 8k PPL 16k PPL 32k PPL 64k PPL
Mistral-7B-v0.1 8k 3.09 2.96 - - -
Yarn-Mistral-7b-64k 64k 3.18 3.04 2.65 2.44 2.20
Yarn-Mistral-7b-128k 128k 3.21 3.08 2.68 2.47 2.24
SOLAR-10.7B-v1.0 4k 3.07 - - - -
Yarn-Solar-10b-32k 32k 3.09 2.95 2.57 2.31 -
Yarn-Solar-10b-64k 64k 3.13 2.99 2.61 2.34 2.15

Short context benchmarks showing that quality degradation is minimal:

Model Context Window ARC-c Hellaswag MMLU Truthful QA
Mistral-7B-v0.1 8k 59.98 83.31 64.16 42.15
Yarn-Mistral-7b-64k 64k 59.38 81.21 61.32 42.50
Yarn-Mistral-7b-128k 128k 58.87 80.58 60.64 42.46
SOLAR-10.7B-v1.0 4k 61.95 84.60 65.48 45.04
Yarn-Solar-10b-32k 32k 59.64 83.65 64.36 44.82
Yarn-Solar-10b-64k 64k 59.21 83.08 63.57 45.70

Collaborators

The authors would like to thank LAION AI for their support of compute for this model. It was trained on the JUWELS supercomputer.