metadata
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:CosineSimilarityLoss
base_model: Rajan/NepaliBERT
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: अघिल्लो वर्ष देखि।
sentences:
- अघिल्लो वर्ष देखि .।
- एउटी महिला बन्दुक हान्दै छिन्।
- हिउँमा हिंडिरहेको सेतो कुकुर।
- source_sentence: यो मोलोच दृश्य हो।
sentences:
- वास्तवमा, यो केवल डच हो।
- एउटा मानिस डोरीमा झुलिरहेको छ।
- रातो झोला लिएर सडकमा उभिएकी केटी।
- source_sentence: दमास्कसमा रुसीहरू!
sentences:
- रुसीहरू दमस्कसमा किन छन्?
- कसैले मिर्चको बीउ निकाल्दै छ।
- एकजना मानिस साइकल चलाउँदै छन्।
- source_sentence: रेल ट्र्याकमा रेल।
sentences:
- लामो रेल रेल ट्र्याकमा छ।
- एउटी महिला सिडु चढिरहेकी छिन्।
- एक व्यक्ति सडकमा हिर्किरहेको छ।
- source_sentence: रातो, डबल डेकर बस।
sentences:
- रातो डबल डेकर बस।
- दुई कालो कुकुर हिउँमा हिंड्दै।
- एउटी महिला मासु फ्राइरहेकी छिन्।
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on Rajan/NepaliBERT
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsb dev nepali
type: stsb-dev-nepali
metrics:
- type: pearson_cosine
value: 0.6971387543395983
name: Pearson Cosine
- type: spearman_cosine
value: 0.6623150295431888
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6332077130918778
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6078651194262178
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6339817618698202
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6090065238762821
name: Spearman Euclidean
- type: pearson_dot
value: 0.4848273995348276
name: Pearson Dot
- type: spearman_dot
value: 0.5306425402414711
name: Spearman Dot
- type: pearson_max
value: 0.6971387543395983
name: Pearson Max
- type: spearman_max
value: 0.6623150295431888
name: Spearman Max
datasets:
- syubraj/stsb_nepali
SentenceTransformer based on Rajan/NepaliBERT
This is a sentence-transformers model finetuned from Rajan/NepaliBERT. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Rajan/NepaliBERT
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("syubraj/sentence_similarity_nepali_v2")
# Run inference
sentences = [
'रातो, डबल डेकर बस।',
'रातो डबल डेकर बस।',
'दुई कालो कुकुर हिउँमा हिंड्दै।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
stsb-dev-nepali
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6971 |
spearman_cosine | 0.6623 |
pearson_manhattan | 0.6332 |
spearman_manhattan | 0.6079 |
pearson_euclidean | 0.634 |
spearman_euclidean | 0.609 |
pearson_dot | 0.4848 |
spearman_dot | 0.5306 |
pearson_max | 0.6971 |
spearman_max | 0.6623 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,599 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 19.5 tokens
- max: 81 tokens
- min: 6 tokens
- mean: 19.43 tokens
- max: 75 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence_0 sentence_1 label एक व्यक्ति प्याज काट्दै छ।
एउटा बिरालो शौचालयमा पपिङ गर्दैछ।
0.0
क्यानडाको तेल रेल विस्फोटमा थप मृत्यु हुने अपेक्षा गरिएको छ
क्यानडामा रेल दुर्घटनामा पाँच जनाको मृत्यु भएको छ
0.5599999904632569
एउटी महिला झिंगा माझ्दै छिन्।
एउटी महिला केही झिंगा माझ्दै।
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 100multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | stsb-dev-nepali_spearman_max |
---|---|---|---|
1.0 | 288 | - | 0.5355 |
1.7361 | 500 | 0.0723 | - |
2.0 | 576 | - | 0.5794 |
3.0 | 864 | - | 0.6108 |
3.4722 | 1000 | 0.047 | 0.6147 |
4.0 | 1152 | - | 0.6259 |
5.0 | 1440 | - | 0.6356 |
5.2083 | 1500 | 0.034 | - |
6.0 | 1728 | - | 0.6329 |
6.9444 | 2000 | 0.0217 | 0.6375 |
7.0 | 2016 | - | 0.6382 |
8.0 | 2304 | - | 0.6468 |
8.6806 | 2500 | 0.0137 | - |
9.0 | 2592 | - | 0.6348 |
10.0 | 2880 | - | 0.6332 |
10.4167 | 3000 | 0.0102 | 0.6427 |
11.0 | 3168 | - | 0.6370 |
12.0 | 3456 | - | 0.6515 |
12.1528 | 3500 | 0.0084 | - |
13.0 | 3744 | - | 0.6546 |
13.8889 | 4000 | 0.0069 | 0.6400 |
14.0 | 4032 | - | 0.6610 |
15.0 | 4320 | - | 0.6495 |
15.625 | 4500 | 0.006 | - |
16.0 | 4608 | - | 0.6574 |
17.0 | 4896 | - | 0.6486 |
17.3611 | 5000 | 0.0053 | 0.6589 |
18.0 | 5184 | - | 0.6592 |
19.0 | 5472 | - | 0.6488 |
19.0972 | 5500 | 0.0047 | - |
20.0 | 5760 | - | 0.6436 |
20.8333 | 6000 | 0.0044 | 0.6576 |
21.0 | 6048 | - | 0.6515 |
22.0 | 6336 | - | 0.6541 |
22.5694 | 6500 | 0.0041 | - |
23.0 | 6624 | - | 0.6549 |
24.0 | 6912 | - | 0.6571 |
24.3056 | 7000 | 0.0037 | 0.6603 |
25.0 | 7200 | - | 0.6699 |
26.0 | 7488 | - | 0.6653 |
26.0417 | 7500 | 0.0037 | - |
27.0 | 7776 | - | 0.6609 |
27.7778 | 8000 | 0.0033 | 0.6578 |
28.0 | 8064 | - | 0.6606 |
29.0 | 8352 | - | 0.6614 |
29.5139 | 8500 | 0.0031 | - |
30.0 | 8640 | - | 0.6579 |
31.0 | 8928 | - | 0.6688 |
31.25 | 9000 | 0.0028 | 0.6650 |
32.0 | 9216 | - | 0.6639 |
32.9861 | 9500 | 0.0027 | - |
33.0 | 9504 | - | 0.6624 |
34.0 | 9792 | - | 0.6646 |
34.7222 | 10000 | 0.0025 | 0.6530 |
35.0 | 10080 | - | 0.6587 |
36.0 | 10368 | - | 0.6671 |
36.4583 | 10500 | 0.0025 | - |
37.0 | 10656 | - | 0.6614 |
38.0 | 10944 | - | 0.6602 |
38.1944 | 11000 | 0.0024 | 0.6576 |
39.0 | 11232 | - | 0.6665 |
39.9306 | 11500 | 0.0023 | - |
40.0 | 11520 | - | 0.6663 |
41.0 | 11808 | - | 0.6734 |
41.6667 | 12000 | 0.0021 | 0.6633 |
42.0 | 12096 | - | 0.6667 |
43.0 | 12384 | - | 0.6679 |
43.4028 | 12500 | 0.002 | - |
44.0 | 12672 | - | 0.6701 |
45.0 | 12960 | - | 0.6650 |
45.1389 | 13000 | 0.0019 | 0.6680 |
46.0 | 13248 | - | 0.6631 |
46.875 | 13500 | 0.0018 | - |
47.0 | 13536 | - | 0.6643 |
48.0 | 13824 | - | 0.6631 |
48.6111 | 14000 | 0.0017 | 0.6648 |
49.0 | 14112 | - | 0.6648 |
50.0 | 14400 | - | 0.6619 |
50.3472 | 14500 | 0.0017 | - |
51.0 | 14688 | - | 0.6633 |
52.0 | 14976 | - | 0.6622 |
52.0833 | 15000 | 0.0016 | 0.6612 |
53.0 | 15264 | - | 0.6670 |
53.8194 | 15500 | 0.0015 | - |
54.0 | 15552 | - | 0.6618 |
55.0 | 15840 | - | 0.6641 |
55.5556 | 16000 | 0.0015 | 0.6617 |
56.0 | 16128 | - | 0.6669 |
57.0 | 16416 | - | 0.6645 |
57.2917 | 16500 | 0.0014 | - |
58.0 | 16704 | - | 0.6642 |
59.0 | 16992 | - | 0.6579 |
59.0278 | 17000 | 0.0013 | 0.6592 |
60.0 | 17280 | - | 0.6589 |
60.7639 | 17500 | 0.0014 | - |
61.0 | 17568 | - | 0.6685 |
62.0 | 17856 | - | 0.6673 |
62.5 | 18000 | 0.0012 | 0.6669 |
63.0 | 18144 | - | 0.6665 |
64.0 | 18432 | - | 0.6626 |
64.2361 | 18500 | 0.0012 | - |
65.0 | 18720 | - | 0.6619 |
65.9722 | 19000 | 0.0012 | 0.6643 |
66.0 | 19008 | - | 0.6651 |
67.0 | 19296 | - | 0.6628 |
67.7083 | 19500 | 0.0011 | - |
68.0 | 19584 | - | 0.6658 |
69.0 | 19872 | - | 0.6615 |
69.4444 | 20000 | 0.0011 | 0.6627 |
70.0 | 20160 | - | 0.6657 |
71.0 | 20448 | - | 0.6663 |
71.1806 | 20500 | 0.0011 | - |
72.0 | 20736 | - | 0.6634 |
72.9167 | 21000 | 0.001 | 0.6649 |
73.0 | 21024 | - | 0.6632 |
74.0 | 21312 | - | 0.6658 |
74.6528 | 21500 | 0.001 | - |
75.0 | 21600 | - | 0.6639 |
76.0 | 21888 | - | 0.6601 |
76.3889 | 22000 | 0.001 | 0.6623 |
77.0 | 22176 | - | 0.6607 |
78.0 | 22464 | - | 0.6613 |
78.125 | 22500 | 0.0009 | - |
79.0 | 22752 | - | 0.6613 |
79.8611 | 23000 | 0.0009 | 0.6615 |
80.0 | 23040 | - | 0.6615 |
81.0 | 23328 | - | 0.6617 |
81.5972 | 23500 | 0.0008 | - |
82.0 | 23616 | - | 0.6604 |
83.0 | 23904 | - | 0.6605 |
83.3333 | 24000 | 0.0008 | 0.6602 |
84.0 | 24192 | - | 0.6628 |
85.0 | 24480 | - | 0.6603 |
85.0694 | 24500 | 0.0008 | - |
86.0 | 24768 | - | 0.6602 |
86.8056 | 25000 | 0.0008 | 0.6592 |
87.0 | 25056 | - | 0.6611 |
88.0 | 25344 | - | 0.6612 |
88.5417 | 25500 | 0.0008 | - |
89.0 | 25632 | - | 0.6607 |
90.0 | 25920 | - | 0.6598 |
90.2778 | 26000 | 0.0008 | 0.6607 |
91.0 | 26208 | - | 0.6615 |
92.0 | 26496 | - | 0.6615 |
92.0139 | 26500 | 0.0007 | - |
93.0 | 26784 | - | 0.6609 |
93.75 | 27000 | 0.0007 | 0.6607 |
94.0 | 27072 | - | 0.6612 |
95.0 | 27360 | - | 0.6624 |
95.4861 | 27500 | 0.0007 | - |
96.0 | 27648 | - | 0.6627 |
97.0 | 27936 | - | 0.6618 |
97.2222 | 28000 | 0.0007 | 0.6619 |
98.0 | 28224 | - | 0.6621 |
98.9583 | 28500 | 0.0007 | - |
99.0 | 28512 | - | 0.6623 |
100.0 | 28800 | - | 0.6623 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}