syubraj's picture
Update README.md
ceb5188 verified
metadata
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:CosineSimilarityLoss
base_model: Rajan/NepaliBERT
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: अघिल्लो वर्ष देखि।
    sentences:
      - अघिल्लो वर्ष देखि .।
      - एउटी महिला बन्दुक हान्दै छिन्।
      - हिउँमा हिंडिरहेको सेतो कुकुर।
  - source_sentence: यो मोलोच दृश्य हो।
    sentences:
      - वास्तवमा, यो केवल डच हो।
      - एउटा मानिस डोरीमा झुलिरहेको छ।
      - रातो झोला लिएर सडकमा उभिएकी केटी।
  - source_sentence: दमास्कसमा रुसीहरू!
    sentences:
      - रुसीहरू दमस्कसमा किन छन्?
      - कसैले मिर्चको बीउ निकाल्दै छ।
      - एकजना मानिस साइकल चलाउँदै छन्।
  - source_sentence: रेल ट्र्याकमा रेल।
    sentences:
      - लामो रेल रेल ट्र्याकमा छ।
      - एउटी महिला सिडु चढिरहेकी छिन्।
      - एक व्यक्ति सडकमा हिर्किरहेको छ।
  - source_sentence: रातो, डबल डेकर बस।
    sentences:
      - रातो डबल डेकर बस।
      - दुई कालो कुकुर हिउँमा हिंड्दै।
      - एउटी महिला मासु फ्राइरहेकी छिन्।
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on Rajan/NepaliBERT
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: stsb dev nepali
          type: stsb-dev-nepali
        metrics:
          - type: pearson_cosine
            value: 0.6971387543395983
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6623150295431888
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6332077130918778
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6078651194262178
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6339817618698202
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6090065238762821
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4848273995348276
            name: Pearson Dot
          - type: spearman_dot
            value: 0.5306425402414711
            name: Spearman Dot
          - type: pearson_max
            value: 0.6971387543395983
            name: Pearson Max
          - type: spearman_max
            value: 0.6623150295431888
            name: Spearman Max
datasets:
  - syubraj/stsb_nepali

SentenceTransformer based on Rajan/NepaliBERT

This is a sentence-transformers model finetuned from Rajan/NepaliBERT. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Rajan/NepaliBERT
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("syubraj/sentence_similarity_nepali_v2")
# Run inference
sentences = [
    'रातो, डबल डेकर बस।',
    'रातो डबल डेकर बस।',
    'दुई कालो कुकुर हिउँमा हिंड्दै।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.6971
spearman_cosine 0.6623
pearson_manhattan 0.6332
spearman_manhattan 0.6079
pearson_euclidean 0.634
spearman_euclidean 0.609
pearson_dot 0.4848
spearman_dot 0.5306
pearson_max 0.6971
spearman_max 0.6623

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,599 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 6 tokens
    • mean: 19.5 tokens
    • max: 81 tokens
    • min: 6 tokens
    • mean: 19.43 tokens
    • max: 75 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    एक व्यक्ति प्याज काट्दै छ। एउटा बिरालो शौचालयमा पपिङ गर्दैछ। 0.0
    क्यानडाको तेल रेल विस्फोटमा थप मृत्यु हुने अपेक्षा गरिएको छ क्यानडामा रेल दुर्घटनामा पाँच जनाको मृत्यु भएको छ 0.5599999904632569
    एउटी महिला झिंगा माझ्दै छिन्। एउटी महिला केही झिंगा माझ्दै। 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 100
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 100
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss stsb-dev-nepali_spearman_max
1.0 288 - 0.5355
1.7361 500 0.0723 -
2.0 576 - 0.5794
3.0 864 - 0.6108
3.4722 1000 0.047 0.6147
4.0 1152 - 0.6259
5.0 1440 - 0.6356
5.2083 1500 0.034 -
6.0 1728 - 0.6329
6.9444 2000 0.0217 0.6375
7.0 2016 - 0.6382
8.0 2304 - 0.6468
8.6806 2500 0.0137 -
9.0 2592 - 0.6348
10.0 2880 - 0.6332
10.4167 3000 0.0102 0.6427
11.0 3168 - 0.6370
12.0 3456 - 0.6515
12.1528 3500 0.0084 -
13.0 3744 - 0.6546
13.8889 4000 0.0069 0.6400
14.0 4032 - 0.6610
15.0 4320 - 0.6495
15.625 4500 0.006 -
16.0 4608 - 0.6574
17.0 4896 - 0.6486
17.3611 5000 0.0053 0.6589
18.0 5184 - 0.6592
19.0 5472 - 0.6488
19.0972 5500 0.0047 -
20.0 5760 - 0.6436
20.8333 6000 0.0044 0.6576
21.0 6048 - 0.6515
22.0 6336 - 0.6541
22.5694 6500 0.0041 -
23.0 6624 - 0.6549
24.0 6912 - 0.6571
24.3056 7000 0.0037 0.6603
25.0 7200 - 0.6699
26.0 7488 - 0.6653
26.0417 7500 0.0037 -
27.0 7776 - 0.6609
27.7778 8000 0.0033 0.6578
28.0 8064 - 0.6606
29.0 8352 - 0.6614
29.5139 8500 0.0031 -
30.0 8640 - 0.6579
31.0 8928 - 0.6688
31.25 9000 0.0028 0.6650
32.0 9216 - 0.6639
32.9861 9500 0.0027 -
33.0 9504 - 0.6624
34.0 9792 - 0.6646
34.7222 10000 0.0025 0.6530
35.0 10080 - 0.6587
36.0 10368 - 0.6671
36.4583 10500 0.0025 -
37.0 10656 - 0.6614
38.0 10944 - 0.6602
38.1944 11000 0.0024 0.6576
39.0 11232 - 0.6665
39.9306 11500 0.0023 -
40.0 11520 - 0.6663
41.0 11808 - 0.6734
41.6667 12000 0.0021 0.6633
42.0 12096 - 0.6667
43.0 12384 - 0.6679
43.4028 12500 0.002 -
44.0 12672 - 0.6701
45.0 12960 - 0.6650
45.1389 13000 0.0019 0.6680
46.0 13248 - 0.6631
46.875 13500 0.0018 -
47.0 13536 - 0.6643
48.0 13824 - 0.6631
48.6111 14000 0.0017 0.6648
49.0 14112 - 0.6648
50.0 14400 - 0.6619
50.3472 14500 0.0017 -
51.0 14688 - 0.6633
52.0 14976 - 0.6622
52.0833 15000 0.0016 0.6612
53.0 15264 - 0.6670
53.8194 15500 0.0015 -
54.0 15552 - 0.6618
55.0 15840 - 0.6641
55.5556 16000 0.0015 0.6617
56.0 16128 - 0.6669
57.0 16416 - 0.6645
57.2917 16500 0.0014 -
58.0 16704 - 0.6642
59.0 16992 - 0.6579
59.0278 17000 0.0013 0.6592
60.0 17280 - 0.6589
60.7639 17500 0.0014 -
61.0 17568 - 0.6685
62.0 17856 - 0.6673
62.5 18000 0.0012 0.6669
63.0 18144 - 0.6665
64.0 18432 - 0.6626
64.2361 18500 0.0012 -
65.0 18720 - 0.6619
65.9722 19000 0.0012 0.6643
66.0 19008 - 0.6651
67.0 19296 - 0.6628
67.7083 19500 0.0011 -
68.0 19584 - 0.6658
69.0 19872 - 0.6615
69.4444 20000 0.0011 0.6627
70.0 20160 - 0.6657
71.0 20448 - 0.6663
71.1806 20500 0.0011 -
72.0 20736 - 0.6634
72.9167 21000 0.001 0.6649
73.0 21024 - 0.6632
74.0 21312 - 0.6658
74.6528 21500 0.001 -
75.0 21600 - 0.6639
76.0 21888 - 0.6601
76.3889 22000 0.001 0.6623
77.0 22176 - 0.6607
78.0 22464 - 0.6613
78.125 22500 0.0009 -
79.0 22752 - 0.6613
79.8611 23000 0.0009 0.6615
80.0 23040 - 0.6615
81.0 23328 - 0.6617
81.5972 23500 0.0008 -
82.0 23616 - 0.6604
83.0 23904 - 0.6605
83.3333 24000 0.0008 0.6602
84.0 24192 - 0.6628
85.0 24480 - 0.6603
85.0694 24500 0.0008 -
86.0 24768 - 0.6602
86.8056 25000 0.0008 0.6592
87.0 25056 - 0.6611
88.0 25344 - 0.6612
88.5417 25500 0.0008 -
89.0 25632 - 0.6607
90.0 25920 - 0.6598
90.2778 26000 0.0008 0.6607
91.0 26208 - 0.6615
92.0 26496 - 0.6615
92.0139 26500 0.0007 -
93.0 26784 - 0.6609
93.75 27000 0.0007 0.6607
94.0 27072 - 0.6612
95.0 27360 - 0.6624
95.4861 27500 0.0007 -
96.0 27648 - 0.6627
97.0 27936 - 0.6618
97.2222 28000 0.0007 0.6619
98.0 28224 - 0.6621
98.9583 28500 0.0007 -
99.0 28512 - 0.6623
100.0 28800 - 0.6623

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}