luke-japanese-large-lite
luke-japanese is the Japanese version of LUKE (Language Understanding with Knowledge-based Embeddings), a pre-trained knowledge-enhanced contextualized representation of words and entities. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Please refer to our GitHub repository for more details and updates.
This model is a lightweight version which does not contain Wikipedia entity embeddings. Please use the full version for tasks that use Wikipedia entities as inputs.
luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。詳細については、GitHub リポジトリを参照してください。
このモデルは、Wikipedia エンティティのエンベディングを含まない軽量版のモデルです。Wikipedia エンティティを入力として使うタスクには、full versionを使用してください。
Experimental results on JGLUE
The experimental results evaluated on the dev set of JGLUE is shown as follows:
Model | MARC-ja | JSTS | JNLI | JCommonsenseQA |
---|---|---|---|---|
acc | Pearson/Spearman | acc | acc | |
LUKE Japanese large | 0.965 | 0.932/0.902 | 0.927 | 0.893 |
Baselines: | ||||
Tohoku BERT large | 0.955 | 0.913/0.872 | 0.900 | 0.816 |
Waseda RoBERTa large (seq128) | 0.954 | 0.930/0.896 | 0.924 | 0.907 |
Waseda RoBERTa large (seq512) | 0.961 | 0.926/0.892 | 0.926 | 0.891 |
XLM RoBERTa large | 0.964 | 0.918/0.884 | 0.919 | 0.840 |
The baseline scores are obtained from here.
Citation
@inproceedings{yamada2020luke,
title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
booktitle={EMNLP},
year={2020}
}
- Downloads last month
- 308