luke-japanese
luke-japanese is the Japanese version of LUKE (Language Understanding with Knowledge-based Embeddings), a pre-trained knowledge-enhanced contextualized representation of words and entities. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Please refer to our GitHub repository for more details and updates.
This model is a lightweight version which does not contain Wikipedia entity embeddings. Please use the full version for tasks that use Wikipedia entities as inputs.
luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。詳細については、GitHub リポジトリを参照してください。
このモデルは、Wikipedia エンティティのエンベディングを含まない軽量版のモデルです。Wikipedia エンティティを入力として使うタスクには、full versionを使用してください。
Experimental results on JGLUE
The experimental results evaluated on the dev set of JGLUE are shown as follows:
Model | MARC-ja | JSTS | JNLI | JCommonsenseQA |
---|---|---|---|---|
acc | Pearson/Spearman | acc | acc | |
LUKE Japanese base | 0.965 | 0.916/0.877 | 0.912 | 0.842 |
Baselines: | ||||
Tohoku BERT base | 0.958 | 0.909/0.868 | 0.899 | 0.808 |
NICT BERT base | 0.958 | 0.910/0.871 | 0.902 | 0.823 |
Waseda RoBERTa base | 0.962 | 0.913/0.873 | 0.895 | 0.840 |
XLM RoBERTa base | 0.961 | 0.877/0.831 | 0.893 | 0.687 |
The baseline scores are obtained from here.
Citation
@inproceedings{yamada2020luke,
title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
booktitle={EMNLP},
year={2020}
}
- Downloads last month
- 549