t5-small-finetuned-billsum-ca_test
This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.3376
- Rouge1: 12.6315
- Rouge2: 6.9839
- Rougel: 10.9983
- Rougelsum: 11.9383
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 495 | 2.4805 | 9.9389 | 4.1239 | 8.3979 | 9.1599 | 19.0 |
3.1564 | 2.0 | 990 | 2.3833 | 12.1026 | 6.5196 | 10.5123 | 11.4527 | 19.0 |
2.66 | 3.0 | 1485 | 2.3496 | 12.5389 | 6.8686 | 10.8798 | 11.8636 | 19.0 |
2.5671 | 4.0 | 1980 | 2.3376 | 12.6315 | 6.9839 | 10.9983 | 11.9383 | 19.0 |
Framework versions
- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train stevhliu/t5-small-finetuned-billsum-ca_test
Evaluation results
- Rouge1 on billsumself-reported12.632
- ROUGE-1 on billsumtest set self-reported12.137
- ROUGE-2 on billsumtest set self-reported4.602
- ROUGE-L on billsumtest set self-reported10.077
- ROUGE-LSUM on billsumtest set self-reported10.689
- loss on billsumtest set self-reported2.898
- gen_len on billsumtest set self-reported19.000