metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:971
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Steps to bake a pie
sentences:
- How to bake a pie?
- What are the ingredients of a pizza?
- How to create a business plan?
- source_sentence: What are the benefits of yoga?
sentences:
- If I combine the yellow and blue colors, what color will I get?
- Can you help me understand this contract?
- What are the benefits of meditation?
- source_sentence: Capital city of Canada
sentences:
- What time does the movie start?
- Who is the President of the United States?
- What is the capital of Canada?
- source_sentence: Tell me about Shopify
sentences:
- Who discovered penicillin?
- Share info about Shopify
- Who invented the telephone?
- source_sentence: What is the melting point of ice at sea level?
sentences:
- What is the boiling point of water at sea level?
- Can you recommend a good restaurant nearby?
- Tell me a joke
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9300411522633745
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.788658857345581
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9237668161434978
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7819762825965881
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8956521739130435
name: Cosine Precision
- type: cosine_recall
value: 0.9537037037037037
name: Cosine Recall
- type: cosine_ap
value: 0.9603135110633257
name: Cosine Ap
- type: dot_accuracy
value: 0.9300411522633745
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.788658857345581
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9237668161434978
name: Dot F1
- type: dot_f1_threshold
value: 0.7819762229919434
name: Dot F1 Threshold
- type: dot_precision
value: 0.8956521739130435
name: Dot Precision
- type: dot_recall
value: 0.9537037037037037
name: Dot Recall
- type: dot_ap
value: 0.9603135110633257
name: Dot Ap
- type: manhattan_accuracy
value: 0.9218106995884774
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.936657905578613
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.914798206278027
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.316186904907227
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8869565217391304
name: Manhattan Precision
- type: manhattan_recall
value: 0.9444444444444444
name: Manhattan Recall
- type: manhattan_ap
value: 0.9578931449470002
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9300411522633745
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6501401662826538
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9237668161434978
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6603381633758545
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8956521739130435
name: Euclidean Precision
- type: euclidean_recall
value: 0.9537037037037037
name: Euclidean Recall
- type: euclidean_ap
value: 0.9603135110633257
name: Euclidean Ap
- type: max_accuracy
value: 0.9300411522633745
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.936657905578613
name: Max Accuracy Threshold
- type: max_f1
value: 0.9237668161434978
name: Max F1
- type: max_f1_threshold
value: 10.316186904907227
name: Max F1 Threshold
- type: max_precision
value: 0.8956521739130435
name: Max Precision
- type: max_recall
value: 0.9537037037037037
name: Max Recall
- type: max_ap
value: 0.9603135110633257
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9300411522633745
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.788658857345581
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9237668161434978
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7819762825965881
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8956521739130435
name: Cosine Precision
- type: cosine_recall
value: 0.9537037037037037
name: Cosine Recall
- type: cosine_ap
value: 0.9603135110633257
name: Cosine Ap
- type: dot_accuracy
value: 0.9300411522633745
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.788658857345581
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9237668161434978
name: Dot F1
- type: dot_f1_threshold
value: 0.7819762229919434
name: Dot F1 Threshold
- type: dot_precision
value: 0.8956521739130435
name: Dot Precision
- type: dot_recall
value: 0.9537037037037037
name: Dot Recall
- type: dot_ap
value: 0.9603135110633257
name: Dot Ap
- type: manhattan_accuracy
value: 0.9218106995884774
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.936657905578613
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.914798206278027
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.316186904907227
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8869565217391304
name: Manhattan Precision
- type: manhattan_recall
value: 0.9444444444444444
name: Manhattan Recall
- type: manhattan_ap
value: 0.9578931449470002
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9300411522633745
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6501401662826538
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9237668161434978
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6603381633758545
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8956521739130435
name: Euclidean Precision
- type: euclidean_recall
value: 0.9537037037037037
name: Euclidean Recall
- type: euclidean_ap
value: 0.9603135110633257
name: Euclidean Ap
- type: max_accuracy
value: 0.9300411522633745
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.936657905578613
name: Max Accuracy Threshold
- type: max_f1
value: 0.9237668161434978
name: Max F1
- type: max_f1_threshold
value: 10.316186904907227
name: Max F1 Threshold
- type: max_precision
value: 0.8956521739130435
name: Max Precision
- type: max_recall
value: 0.9537037037037037
name: Max Recall
- type: max_ap
value: 0.9603135110633257
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-4")
# Run inference
sentences = [
'What is the melting point of ice at sea level?',
'What is the boiling point of water at sea level?',
'Can you recommend a good restaurant nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.93 |
cosine_accuracy_threshold | 0.7887 |
cosine_f1 | 0.9238 |
cosine_f1_threshold | 0.782 |
cosine_precision | 0.8957 |
cosine_recall | 0.9537 |
cosine_ap | 0.9603 |
dot_accuracy | 0.93 |
dot_accuracy_threshold | 0.7887 |
dot_f1 | 0.9238 |
dot_f1_threshold | 0.782 |
dot_precision | 0.8957 |
dot_recall | 0.9537 |
dot_ap | 0.9603 |
manhattan_accuracy | 0.9218 |
manhattan_accuracy_threshold | 9.9367 |
manhattan_f1 | 0.9148 |
manhattan_f1_threshold | 10.3162 |
manhattan_precision | 0.887 |
manhattan_recall | 0.9444 |
manhattan_ap | 0.9579 |
euclidean_accuracy | 0.93 |
euclidean_accuracy_threshold | 0.6501 |
euclidean_f1 | 0.9238 |
euclidean_f1_threshold | 0.6603 |
euclidean_precision | 0.8957 |
euclidean_recall | 0.9537 |
euclidean_ap | 0.9603 |
max_accuracy | 0.93 |
max_accuracy_threshold | 9.9367 |
max_f1 | 0.9238 |
max_f1_threshold | 10.3162 |
max_precision | 0.8957 |
max_recall | 0.9537 |
max_ap | 0.9603 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.93 |
cosine_accuracy_threshold | 0.7887 |
cosine_f1 | 0.9238 |
cosine_f1_threshold | 0.782 |
cosine_precision | 0.8957 |
cosine_recall | 0.9537 |
cosine_ap | 0.9603 |
dot_accuracy | 0.93 |
dot_accuracy_threshold | 0.7887 |
dot_f1 | 0.9238 |
dot_f1_threshold | 0.782 |
dot_precision | 0.8957 |
dot_recall | 0.9537 |
dot_ap | 0.9603 |
manhattan_accuracy | 0.9218 |
manhattan_accuracy_threshold | 9.9367 |
manhattan_f1 | 0.9148 |
manhattan_f1_threshold | 10.3162 |
manhattan_precision | 0.887 |
manhattan_recall | 0.9444 |
manhattan_ap | 0.9579 |
euclidean_accuracy | 0.93 |
euclidean_accuracy_threshold | 0.6501 |
euclidean_f1 | 0.9238 |
euclidean_f1_threshold | 0.6603 |
euclidean_precision | 0.8957 |
euclidean_recall | 0.9537 |
euclidean_ap | 0.9603 |
max_accuracy | 0.93 |
max_accuracy_threshold | 9.9367 |
max_f1 | 0.9238 |
max_f1_threshold | 10.3162 |
max_precision | 0.8957 |
max_recall | 0.9537 |
max_ap | 0.9603 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 971 training samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 10.12 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.82 tokens
- max: 22 tokens
- 0: ~48.61%
- 1: ~51.39%
- Samples:
sentence2 sentence1 label Total number of bones in an adult human body
How many bones are in the human body?
1
What is the largest river in North America?
What is the largest lake in North America?
0
What is the capital of Australia?
What is the capital of New Zealand?
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 243 evaluation samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 10.09 tokens
- max: 20 tokens
- min: 6 tokens
- mean: 10.55 tokens
- max: 22 tokens
- 0: ~55.56%
- 1: ~44.44%
- Samples:
sentence2 sentence1 label What are the various forms of renewable energy?
What are the different types of renewable energy?
1
Gravity discoverer
Who discovered gravity?
1
Can you help me write this report?
Can you help me understand this report?
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2learning_rate
: 3e-06weight_decay
: 0.01num_train_epochs
: 15lr_scheduler_type
: reduce_lr_on_plateauwarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6426 | - |
0.6452 | 10 | 4.7075 | - | - | - |
0.9677 | 15 | - | 3.1481 | 0.7843 | - |
1.2903 | 20 | 3.431 | - | - | - |
1.9355 | 30 | 3.4054 | - | - | - |
2.0 | 31 | - | 2.1820 | 0.8692 | - |
2.5806 | 40 | 2.2735 | - | - | - |
2.9677 | 46 | - | 1.8185 | 0.9078 | - |
3.2258 | 50 | 2.3159 | - | - | - |
3.8710 | 60 | 2.1466 | - | - | - |
4.0 | 62 | - | 1.5769 | 0.9252 | - |
4.5161 | 70 | 1.6873 | - | - | - |
4.9677 | 77 | - | 1.4342 | 0.9310 | - |
5.1613 | 80 | 1.5927 | - | - | - |
5.8065 | 90 | 1.4184 | - | - | - |
6.0 | 93 | - | 1.3544 | 0.9357 | - |
6.4516 | 100 | 1.333 | - | - | - |
6.9677 | 108 | - | 1.2630 | 0.9402 | - |
7.0968 | 110 | 1.089 | - | - | - |
7.7419 | 120 | 1.0947 | - | - | - |
8.0 | 124 | - | 1.2120 | 0.9444 | - |
8.3871 | 130 | 0.8118 | - | - | - |
8.9677 | 139 | - | 1.1641 | 0.9454 | - |
9.0323 | 140 | 1.0237 | - | - | - |
9.6774 | 150 | 0.8406 | - | - | - |
10.0 | 155 | - | 1.0481 | 0.9464 | - |
10.3226 | 160 | 0.7081 | - | - | - |
10.9677 | 170 | 0.7397 | 0.9324 | 0.9509 | - |
11.6129 | 180 | 0.5604 | - | - | - |
12.0 | 186 | - | 0.8386 | 0.9556 | - |
12.2581 | 190 | 0.5841 | - | - | - |
12.9032 | 200 | 0.5463 | - | - | - |
12.9677 | 201 | - | 0.7930 | 0.9577 | - |
13.5484 | 210 | 0.4599 | - | - | - |
14.0 | 217 | - | 0.7564 | 0.9599 | - |
14.1935 | 220 | 0.2437 | - | - | - |
14.5161 | 225 | - | 0.7522 | 0.9603 | 0.9603 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}