Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import BartForSequenceClassification, BartTokenizer | |
import torch.nn.functional as F | |
import torch | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from transformers import Pipeline | |
te_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-mnli') | |
te_model = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli') | |
qa_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") | |
qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto") | |
def predict(context, intent): | |
input_text = "In one word, what is the opposite of: " + intent + "?" | |
input_ids = qa_tokenizer(input_text, return_tensors="pt") | |
encoded_input = qa_tokenizer(input_ids, return_tensors="pt") | |
opposite_output = qa_tokenizer.decode(qa_model.generate(encoded_input)[0]) | |
input_text = "In one word, what is the following describing: " + context | |
input_ids = qa_tokenizer(input_text, return_tensors="pt") | |
encoded_input = qa_tokenizer(input_ids, return_tensors="pt") | |
object_output = qa_tokenizer.decode(qa_model.generate(encoded_input)[0]) | |
batch = ['I think the ' + object_output + ' are long.', 'I think the ' + object_output + ' are ' + opposite_output, 'I think the ' + object_output + ' are the perfect'] | |
outputs = [] | |
for i, hypothesis in enumerate(batch): | |
input_ids = te_tokenizer.encode(context, hypothesis, return_tensors='pt') | |
# -> [contradiction, neutral, entailment] | |
logits = te_model(input_ids)[0][0] | |
if (i == 2): | |
# -> [contradiction, entailment] | |
probs = logits[[0,2]].softmax(dim=0) | |
else: | |
probs = logits.softmax(dim=0) | |
outputs.append(probs) | |
# -> [entailment, contradiction] | |
outputs[2] = outputs[2].flip(dims=[0]) | |
# -> [entailment, neutral, contradiction] | |
outputs[0] = outputs[0].flip(dims=[0]) | |
pn_tensor = (outputs[0] + outputs[1]).softmax(dim=0) | |
pn_tensor[1] = pn_tensor[1] * outputs[2][0] | |
pn_tensor[2] = pn_tensor[2] * outputs[2][1] | |
pn_tensor[0] = pn_tensor[0] * outputs[2][1] | |
pn_tensor = F.normalize(pn_tensor, p=1, dim=0) | |
pn_tensor = pn_tensor.softmax(dim=0) | |
return {"entailment": pn_tensor[0].item(), "neutral": pn_tensor[1].item(), "contradiction": pn_tensor[2].item()} | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Text(label="Input sentence"), | |
outputs=[gr.Label(num_top_classes=3)], | |
title="Hot Dog? Or Not?", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |