Spaces:
Sleeping
Sleeping
Create app
Browse files
app.py
CHANGED
@@ -1,3 +1,58 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import BartForSequenceClassification, BartTokenizer
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch
|
5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
+
from transformers import Pipeline
|
7 |
|
8 |
+
te_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
|
9 |
+
te_model = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
|
10 |
+
qa_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
11 |
+
qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto")
|
12 |
+
|
13 |
+
def predict(context, intent):
|
14 |
+
input_text = "In one word, what is the opposite of: " + intent + "?"
|
15 |
+
input_ids = qa_tokenizer(input_text, return_tensors="pt")
|
16 |
+
encoded_input = qa_tokenizer(input_ids, return_tensors="pt")
|
17 |
+
opposite_output = qa_tokenizer.decode(qa_model.generate(encoded_input)[0])
|
18 |
+
input_text = "In one word, what is the following describing: " + context
|
19 |
+
input_ids = qa_tokenizer(input_text, return_tensors="pt")
|
20 |
+
encoded_input = qa_tokenizer(input_ids, return_tensors="pt")
|
21 |
+
object_output = qa_tokenizer.decode(qa_model.generate(encoded_input)[0])
|
22 |
+
batch = ['I think the ' + object_output + ' are long.', 'I think the ' + object_output + ' are ' + opposite_output, 'I think the ' + object_output + ' are the perfect']
|
23 |
+
outputs = []
|
24 |
+
for i, hypothesis in enumerate(batch):
|
25 |
+
input_ids = te_tokenizer.encode(context, hypothesis, return_tensors='pt')
|
26 |
+
# -> [contradiction, neutral, entailment]
|
27 |
+
logits = te_model(input_ids)[0][0]
|
28 |
+
|
29 |
+
if (i == 2):
|
30 |
+
# -> [contradiction, entailment]
|
31 |
+
probs = logits[[0,2]].softmax(dim=0)
|
32 |
+
else:
|
33 |
+
probs = logits.softmax(dim=0)
|
34 |
+
outputs.append(probs)
|
35 |
+
|
36 |
+
# -> [entailment, contradiction]
|
37 |
+
outputs[2] = outputs[2].flip(dims=[0])
|
38 |
+
# -> [entailment, neutral, contradiction]
|
39 |
+
outputs[0] = outputs[0].flip(dims=[0])
|
40 |
+
pn_tensor = (outputs[0] + outputs[1]).softmax(dim=0)
|
41 |
+
pn_tensor[1] = pn_tensor[1] * outputs[2][0]
|
42 |
+
pn_tensor[2] = pn_tensor[2] * outputs[2][1]
|
43 |
+
pn_tensor[0] = pn_tensor[0] * outputs[2][1]
|
44 |
+
|
45 |
+
pn_tensor = F.normalize(pn_tensor, p=1, dim=0)
|
46 |
+
|
47 |
+
pn_tensor = pn_tensor.softmax(dim=0)
|
48 |
+
return {"entailment": pn_tensor[0].item(), "neutral": pn_tensor[1].item(), "contradiction": pn_tensor[2].item()}
|
49 |
+
|
50 |
+
gradio_app = gr.Interface(
|
51 |
+
predict,
|
52 |
+
inputs=gr.Text(label="Input sentence"),
|
53 |
+
outputs=[gr.Label(num_top_classes=3)],
|
54 |
+
title="Hot Dog? Or Not?",
|
55 |
+
)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
gradio_app.launch()
|