Spaces:
Running
Running
#import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
from PIL import Image | |
import torch | |
import requests | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained( | |
'allenai/Molmo-7B-D-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
'allenai/Molmo-7B-D-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
#@spaces.GPU | |
def describe_image(image, prompt): | |
# Process the image with the user-provided text prompt | |
inputs = processor.process(images=[image], text=prompt) | |
# Move inputs to the correct device and make a batch of size 1 | |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
# Generate output with a maximum of 200 new tokens | |
output = model.generate_from_batch( | |
inputs, | |
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), | |
tokenizer=processor.tokenizer | |
) | |
# Decode and return the generated text | |
generated_tokens = output[0, inputs['input_ids'].size(1):] | |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
return generated_text | |
# Gradio interface using the latest API | |
with gr.Blocks() as demo: | |
gr.Markdown("# Visual Language Model - Molmo") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload an image") | |
text_input = gr.Textbox(label="Enter a prompt", placeholder="Describe this image...") | |
output_text = gr.Textbox(label="Generated Description") | |
submit_button = gr.Button("Generate Description") | |
# Connect the inputs (image, text prompt) to the function and output | |
submit_button.click(fn=describe_image, inputs=[image_input, text_input], outputs=output_text) | |
# Launch the app | |
demo.launch() | |