#import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig from PIL import Image import torch import requests # Load the processor and model processor = AutoProcessor.from_pretrained( 'allenai/Molmo-7B-D-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) model = AutoModelForCausalLM.from_pretrained( 'allenai/Molmo-7B-D-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) #@spaces.GPU def describe_image(image, prompt): # Process the image with the user-provided text prompt inputs = processor.process(images=[image], text=prompt) # Move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} # Generate output with a maximum of 200 new tokens output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # Decode and return the generated text generated_tokens = output[0, inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) return generated_text # Gradio interface using the latest API with gr.Blocks() as demo: gr.Markdown("# Visual Language Model - Molmo") with gr.Row(): image_input = gr.Image(type="pil", label="Upload an image") text_input = gr.Textbox(label="Enter a prompt", placeholder="Describe this image...") output_text = gr.Textbox(label="Generated Description") submit_button = gr.Button("Generate Description") # Connect the inputs (image, text prompt) to the function and output submit_button.click(fn=describe_image, inputs=[image_input, text_input], outputs=output_text) # Launch the app demo.launch()