Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import contextlib | |
import math | |
import warnings | |
from pathlib import Path | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from PIL import __version__ as pil_version | |
from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded | |
from .checks import check_font, check_version, is_ascii | |
from .files import increment_path | |
class Colors: | |
""" | |
Ultralytics default color palette https://ultralytics.com/. | |
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to | |
RGB values. | |
Attributes: | |
palette (list of tuple): List of RGB color values. | |
n (int): The number of colors in the palette. | |
pose_palette (np.ndarray): A specific color palette array with dtype np.uint8. | |
""" | |
def __init__(self): | |
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" | |
hexs = ( | |
"FF3838", | |
"FF9D97", | |
"FF701F", | |
"FFB21D", | |
"CFD231", | |
"48F90A", | |
"92CC17", | |
"3DDB86", | |
"1A9334", | |
"00D4BB", | |
"2C99A8", | |
"00C2FF", | |
"344593", | |
"6473FF", | |
"0018EC", | |
"8438FF", | |
"520085", | |
"CB38FF", | |
"FF95C8", | |
"FF37C7", | |
) | |
self.palette = [self.hex2rgb(f"#{c}") for c in hexs] | |
self.n = len(self.palette) | |
self.pose_palette = np.array( | |
[ | |
[255, 128, 0], | |
[255, 153, 51], | |
[255, 178, 102], | |
[230, 230, 0], | |
[255, 153, 255], | |
[153, 204, 255], | |
[255, 102, 255], | |
[255, 51, 255], | |
[102, 178, 255], | |
[51, 153, 255], | |
[255, 153, 153], | |
[255, 102, 102], | |
[255, 51, 51], | |
[153, 255, 153], | |
[102, 255, 102], | |
[51, 255, 51], | |
[0, 255, 0], | |
[0, 0, 255], | |
[255, 0, 0], | |
[255, 255, 255], | |
], | |
dtype=np.uint8, | |
) | |
def __call__(self, i, bgr=False): | |
"""Converts hex color codes to RGB values.""" | |
c = self.palette[int(i) % self.n] | |
return (c[2], c[1], c[0]) if bgr else c | |
def hex2rgb(h): | |
"""Converts hex color codes to RGB values (i.e. default PIL order).""" | |
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4)) | |
colors = Colors() # create instance for 'from utils.plots import colors' | |
class Annotator: | |
""" | |
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations. | |
Attributes: | |
im (Image.Image or numpy array): The image to annotate. | |
pil (bool): Whether to use PIL or cv2 for drawing annotations. | |
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations. | |
lw (float): Line width for drawing. | |
skeleton (List[List[int]]): Skeleton structure for keypoints. | |
limb_color (List[int]): Color palette for limbs. | |
kpt_color (List[int]): Color palette for keypoints. | |
""" | |
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"): | |
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" | |
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic | |
input_is_pil = isinstance(im, Image.Image) | |
self.pil = pil or non_ascii or input_is_pil | |
self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2) | |
if self.pil: # use PIL | |
self.im = im if input_is_pil else Image.fromarray(im) | |
self.draw = ImageDraw.Draw(self.im) | |
try: | |
font = check_font("Arial.Unicode.ttf" if non_ascii else font) | |
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12) | |
self.font = ImageFont.truetype(str(font), size) | |
except Exception: | |
self.font = ImageFont.load_default() | |
# Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string) | |
if check_version(pil_version, "9.2.0"): | |
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height | |
else: # use cv2 | |
assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images." | |
self.im = im if im.flags.writeable else im.copy() | |
self.tf = max(self.lw - 1, 1) # font thickness | |
self.sf = self.lw / 3 # font scale | |
# Pose | |
self.skeleton = [ | |
[16, 14], | |
[14, 12], | |
[17, 15], | |
[15, 13], | |
[12, 13], | |
[6, 12], | |
[7, 13], | |
[6, 7], | |
[6, 8], | |
[7, 9], | |
[8, 10], | |
[9, 11], | |
[2, 3], | |
[1, 2], | |
[1, 3], | |
[2, 4], | |
[3, 5], | |
[4, 6], | |
[5, 7], | |
] | |
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]] | |
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]] | |
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False): | |
"""Add one xyxy box to image with label.""" | |
if isinstance(box, torch.Tensor): | |
box = box.tolist() | |
if self.pil or not is_ascii(label): | |
if rotated: | |
p1 = box[0] | |
# NOTE: PIL-version polygon needs tuple type. | |
self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color) | |
else: | |
p1 = (box[0], box[1]) | |
self.draw.rectangle(box, width=self.lw, outline=color) # box | |
if label: | |
w, h = self.font.getsize(label) # text width, height | |
outside = p1[1] - h >= 0 # label fits outside box | |
self.draw.rectangle( | |
(p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1), | |
fill=color, | |
) | |
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 | |
self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font) | |
else: # cv2 | |
if rotated: | |
p1 = [int(b) for b in box[0]] | |
# NOTE: cv2-version polylines needs np.asarray type. | |
cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw) | |
else: | |
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) | |
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) | |
if label: | |
w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height | |
outside = p1[1] - h >= 3 | |
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 | |
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled | |
cv2.putText( | |
self.im, | |
label, | |
(p1[0], p1[1] - 2 if outside else p1[1] + h + 2), | |
0, | |
self.sf, | |
txt_color, | |
thickness=self.tf, | |
lineType=cv2.LINE_AA, | |
) | |
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): | |
""" | |
Plot masks on image. | |
Args: | |
masks (tensor): Predicted masks on cuda, shape: [n, h, w] | |
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n] | |
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1] | |
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque | |
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False. | |
""" | |
if self.pil: | |
# Convert to numpy first | |
self.im = np.asarray(self.im).copy() | |
if len(masks) == 0: | |
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 | |
if im_gpu.device != masks.device: | |
im_gpu = im_gpu.to(masks.device) | |
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3) | |
colors = colors[:, None, None] # shape(n,1,1,3) | |
masks = masks.unsqueeze(3) # shape(n,h,w,1) | |
masks_color = masks * (colors * alpha) # shape(n,h,w,3) | |
inv_alpha_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) | |
mcs = masks_color.max(dim=0).values # shape(n,h,w,3) | |
im_gpu = im_gpu.flip(dims=[0]) # flip channel | |
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) | |
im_gpu = im_gpu * inv_alpha_masks[-1] + mcs | |
im_mask = im_gpu * 255 | |
im_mask_np = im_mask.byte().cpu().numpy() | |
self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape) | |
if self.pil: | |
# Convert im back to PIL and update draw | |
self.fromarray(self.im) | |
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True): | |
""" | |
Plot keypoints on the image. | |
Args: | |
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence). | |
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width. | |
radius (int, optional): Radius of the drawn keypoints. Default is 5. | |
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints | |
for human pose. Default is True. | |
Note: | |
`kpt_line=True` currently only supports human pose plotting. | |
""" | |
if self.pil: | |
# Convert to numpy first | |
self.im = np.asarray(self.im).copy() | |
nkpt, ndim = kpts.shape | |
is_pose = nkpt == 17 and ndim in {2, 3} | |
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting | |
for i, k in enumerate(kpts): | |
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i) | |
x_coord, y_coord = k[0], k[1] | |
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: | |
if len(k) == 3: | |
conf = k[2] | |
if conf < 0.5: | |
continue | |
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA) | |
if kpt_line: | |
ndim = kpts.shape[-1] | |
for i, sk in enumerate(self.skeleton): | |
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1])) | |
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1])) | |
if ndim == 3: | |
conf1 = kpts[(sk[0] - 1), 2] | |
conf2 = kpts[(sk[1] - 1), 2] | |
if conf1 < 0.5 or conf2 < 0.5: | |
continue | |
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0: | |
continue | |
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0: | |
continue | |
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA) | |
if self.pil: | |
# Convert im back to PIL and update draw | |
self.fromarray(self.im) | |
def rectangle(self, xy, fill=None, outline=None, width=1): | |
"""Add rectangle to image (PIL-only).""" | |
self.draw.rectangle(xy, fill, outline, width) | |
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False): | |
"""Adds text to an image using PIL or cv2.""" | |
if anchor == "bottom": # start y from font bottom | |
w, h = self.font.getsize(text) # text width, height | |
xy[1] += 1 - h | |
if self.pil: | |
if box_style: | |
w, h = self.font.getsize(text) | |
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) | |
# Using `txt_color` for background and draw fg with white color | |
txt_color = (255, 255, 255) | |
if "\n" in text: | |
lines = text.split("\n") | |
_, h = self.font.getsize(text) | |
for line in lines: | |
self.draw.text(xy, line, fill=txt_color, font=self.font) | |
xy[1] += h | |
else: | |
self.draw.text(xy, text, fill=txt_color, font=self.font) | |
else: | |
if box_style: | |
w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height | |
outside = xy[1] - h >= 3 | |
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3 | |
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled | |
# Using `txt_color` for background and draw fg with white color | |
txt_color = (255, 255, 255) | |
cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA) | |
def fromarray(self, im): | |
"""Update self.im from a numpy array.""" | |
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
self.draw = ImageDraw.Draw(self.im) | |
def result(self): | |
"""Return annotated image as array.""" | |
return np.asarray(self.im) | |
def show(self, title=None): | |
"""Show the annotated image.""" | |
Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title) | |
def save(self, filename="image.jpg"): | |
"""Save the annotated image to 'filename'.""" | |
cv2.imwrite(filename, np.asarray(self.im)) | |
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5): | |
""" | |
Draw region line. | |
Args: | |
reg_pts (list): Region Points (for line 2 points, for region 4 points) | |
color (tuple): Region Color value | |
thickness (int): Region area thickness value | |
""" | |
cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness) | |
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2): | |
""" | |
Draw centroid point and track trails. | |
Args: | |
track (list): object tracking points for trails display | |
color (tuple): tracks line color | |
track_thickness (int): track line thickness value | |
""" | |
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) | |
cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness) | |
cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1) | |
def count_labels(self, counts=0, count_txt_size=2, color=(255, 255, 255), txt_color=(0, 0, 0)): | |
""" | |
Plot counts for object counter. | |
Args: | |
counts (int): objects counts value | |
count_txt_size (int): text size for counts display | |
color (tuple): background color of counts display | |
txt_color (tuple): text color of counts display | |
""" | |
self.tf = count_txt_size | |
tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1 | |
tf = max(tl - 1, 1) | |
# Get text size for in_count and out_count | |
t_size_in = cv2.getTextSize(str(counts), 0, fontScale=tl / 2, thickness=tf)[0] | |
# Calculate positions for counts label | |
text_width = t_size_in[0] | |
text_x = (self.im.shape[1] - text_width) // 2 # Center x-coordinate | |
text_y = t_size_in[1] | |
# Create a rounded rectangle for in_count | |
cv2.rectangle( | |
self.im, (text_x - 5, text_y - 5), (text_x + text_width + 7, text_y + t_size_in[1] + 7), color, -1 | |
) | |
cv2.putText( | |
self.im, str(counts), (text_x, text_y + t_size_in[1]), 0, tl / 2, txt_color, self.tf, lineType=cv2.LINE_AA | |
) | |
def estimate_pose_angle(a, b, c): | |
""" | |
Calculate the pose angle for object. | |
Args: | |
a (float) : The value of pose point a | |
b (float): The value of pose point b | |
c (float): The value o pose point c | |
Returns: | |
angle (degree): Degree value of angle between three points | |
""" | |
a, b, c = np.array(a), np.array(b), np.array(c) | |
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0]) | |
angle = np.abs(radians * 180.0 / np.pi) | |
if angle > 180.0: | |
angle = 360 - angle | |
return angle | |
def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2): | |
""" | |
Draw specific keypoints for gym steps counting. | |
Args: | |
keypoints (list): list of keypoints data to be plotted | |
indices (list): keypoints ids list to be plotted | |
shape (tuple): imgsz for model inference | |
radius (int): Keypoint radius value | |
""" | |
for i, k in enumerate(keypoints): | |
if i in indices: | |
x_coord, y_coord = k[0], k[1] | |
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: | |
if len(k) == 3: | |
conf = k[2] | |
if conf < 0.5: | |
continue | |
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA) | |
return self.im | |
def plot_angle_and_count_and_stage(self, angle_text, count_text, stage_text, center_kpt, line_thickness=2): | |
""" | |
Plot the pose angle, count value and step stage. | |
Args: | |
angle_text (str): angle value for workout monitoring | |
count_text (str): counts value for workout monitoring | |
stage_text (str): stage decision for workout monitoring | |
center_kpt (int): centroid pose index for workout monitoring | |
line_thickness (int): thickness for text display | |
""" | |
angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}") | |
font_scale = 0.6 + (line_thickness / 10.0) | |
# Draw angle | |
(angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, font_scale, line_thickness) | |
angle_text_position = (int(center_kpt[0]), int(center_kpt[1])) | |
angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5) | |
angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (line_thickness * 2)) | |
cv2.rectangle( | |
self.im, | |
angle_background_position, | |
( | |
angle_background_position[0] + angle_background_size[0], | |
angle_background_position[1] + angle_background_size[1], | |
), | |
(255, 255, 255), | |
-1, | |
) | |
cv2.putText(self.im, angle_text, angle_text_position, 0, font_scale, (0, 0, 0), line_thickness) | |
# Draw Counts | |
(count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, font_scale, line_thickness) | |
count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20) | |
count_background_position = ( | |
angle_background_position[0], | |
angle_background_position[1] + angle_background_size[1] + 5, | |
) | |
count_background_size = (count_text_width + 10, count_text_height + 10 + (line_thickness * 2)) | |
cv2.rectangle( | |
self.im, | |
count_background_position, | |
( | |
count_background_position[0] + count_background_size[0], | |
count_background_position[1] + count_background_size[1], | |
), | |
(255, 255, 255), | |
-1, | |
) | |
cv2.putText(self.im, count_text, count_text_position, 0, font_scale, (0, 0, 0), line_thickness) | |
# Draw Stage | |
(stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, font_scale, line_thickness) | |
stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40) | |
stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5) | |
stage_background_size = (stage_text_width + 10, stage_text_height + 10) | |
cv2.rectangle( | |
self.im, | |
stage_background_position, | |
( | |
stage_background_position[0] + stage_background_size[0], | |
stage_background_position[1] + stage_background_size[1], | |
), | |
(255, 255, 255), | |
-1, | |
) | |
cv2.putText(self.im, stage_text, stage_text_position, 0, font_scale, (0, 0, 0), line_thickness) | |
def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None): | |
""" | |
Function for drawing segmented object in bounding box shape. | |
Args: | |
mask (list): masks data list for instance segmentation area plotting | |
mask_color (tuple): mask foreground color | |
det_label (str): Detection label text | |
track_label (str): Tracking label text | |
""" | |
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2) | |
label = f"Track ID: {track_label}" if track_label else det_label | |
text_size, _ = cv2.getTextSize(label, 0, 0.7, 1) | |
cv2.rectangle( | |
self.im, | |
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10), | |
(int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)), | |
mask_color, | |
-1, | |
) | |
cv2.putText( | |
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2 | |
) | |
def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color): | |
""" | |
Plot the distance and line on frame. | |
Args: | |
distance_m (float): Distance between two bbox centroids in meters. | |
distance_mm (float): Distance between two bbox centroids in millimeters. | |
centroids (list): Bounding box centroids data. | |
line_color (RGB): Distance line color. | |
centroid_color (RGB): Bounding box centroid color. | |
""" | |
(text_width_m, text_height_m), _ = cv2.getTextSize( | |
f"Distance M: {distance_m:.2f}m", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2 | |
) | |
cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), (255, 255, 255), -1) | |
cv2.putText( | |
self.im, | |
f"Distance M: {distance_m:.2f}m", | |
(20, 50), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.8, | |
(0, 0, 0), | |
2, | |
cv2.LINE_AA, | |
) | |
(text_width_mm, text_height_mm), _ = cv2.getTextSize( | |
f"Distance MM: {distance_mm:.2f}mm", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2 | |
) | |
cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), (255, 255, 255), -1) | |
cv2.putText( | |
self.im, | |
f"Distance MM: {distance_mm:.2f}mm", | |
(20, 100), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.8, | |
(0, 0, 0), | |
2, | |
cv2.LINE_AA, | |
) | |
cv2.line(self.im, centroids[0], centroids[1], line_color, 3) | |
cv2.circle(self.im, centroids[0], 6, centroid_color, -1) | |
cv2.circle(self.im, centroids[1], 6, centroid_color, -1) | |
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10): | |
""" | |
Function for pinpoint human-vision eye mapping and plotting. | |
Args: | |
box (list): Bounding box coordinates | |
center_point (tuple): center point for vision eye view | |
color (tuple): object centroid and line color value | |
pin_color (tuple): visioneye point color value | |
thickness (int): int value for line thickness | |
pins_radius (int): visioneye point radius value | |
""" | |
center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2) | |
cv2.circle(self.im, center_point, pins_radius, pin_color, -1) | |
cv2.circle(self.im, center_bbox, pins_radius, color, -1) | |
cv2.line(self.im, center_point, center_bbox, color, thickness) | |
# known issue https://github.com/ultralytics/yolov5/issues/5395 | |
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None): | |
"""Plot training labels including class histograms and box statistics.""" | |
import pandas as pd | |
import seaborn as sn | |
# Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings | |
warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight") | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
# Plot dataset labels | |
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") | |
nc = int(cls.max() + 1) # number of classes | |
boxes = boxes[:1000000] # limit to 1M boxes | |
x = pd.DataFrame(boxes, columns=["x", "y", "width", "height"]) | |
# Seaborn correlogram | |
sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) | |
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200) | |
plt.close() | |
# Matplotlib labels | |
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() | |
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
for i in range(nc): | |
y[2].patches[i].set_color([x / 255 for x in colors(i)]) | |
ax[0].set_ylabel("instances") | |
if 0 < len(names) < 30: | |
ax[0].set_xticks(range(len(names))) | |
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) | |
else: | |
ax[0].set_xlabel("classes") | |
sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9) | |
sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9) | |
# Rectangles | |
boxes[:, 0:2] = 0.5 # center | |
boxes = ops.xywh2xyxy(boxes) * 1000 | |
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) | |
for cls, box in zip(cls[:500], boxes[:500]): | |
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot | |
ax[1].imshow(img) | |
ax[1].axis("off") | |
for a in [0, 1, 2, 3]: | |
for s in ["top", "right", "left", "bottom"]: | |
ax[a].spines[s].set_visible(False) | |
fname = save_dir / "labels.jpg" | |
plt.savefig(fname, dpi=200) | |
plt.close() | |
if on_plot: | |
on_plot(fname) | |
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True): | |
""" | |
Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop. | |
This function takes a bounding box and an image, and then saves a cropped portion of the image according | |
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding | |
adjustments to the bounding box. | |
Args: | |
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format. | |
im (numpy.ndarray): The input image. | |
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'. | |
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02. | |
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10. | |
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False. | |
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False. | |
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True. | |
Returns: | |
(numpy.ndarray): The cropped image. | |
Example: | |
```python | |
from ultralytics.utils.plotting import save_one_box | |
xyxy = [50, 50, 150, 150] | |
im = cv2.imread('image.jpg') | |
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True) | |
``` | |
""" | |
if not isinstance(xyxy, torch.Tensor): # may be list | |
xyxy = torch.stack(xyxy) | |
b = ops.xyxy2xywh(xyxy.view(-1, 4)) # boxes | |
if square: | |
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square | |
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad | |
xyxy = ops.xywh2xyxy(b).long() | |
xyxy = ops.clip_boxes(xyxy, im.shape) | |
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)] | |
if save: | |
file.parent.mkdir(parents=True, exist_ok=True) # make directory | |
f = str(increment_path(file).with_suffix(".jpg")) | |
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue | |
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB | |
return crop | |
def plot_images( | |
images, | |
batch_idx, | |
cls, | |
bboxes=np.zeros(0, dtype=np.float32), | |
confs=None, | |
masks=np.zeros(0, dtype=np.uint8), | |
kpts=np.zeros((0, 51), dtype=np.float32), | |
paths=None, | |
fname="images.jpg", | |
names=None, | |
on_plot=None, | |
max_subplots=16, | |
save=True, | |
conf_thres=0.25, | |
): | |
"""Plot image grid with labels.""" | |
if isinstance(images, torch.Tensor): | |
images = images.cpu().float().numpy() | |
if isinstance(cls, torch.Tensor): | |
cls = cls.cpu().numpy() | |
if isinstance(bboxes, torch.Tensor): | |
bboxes = bboxes.cpu().numpy() | |
if isinstance(masks, torch.Tensor): | |
masks = masks.cpu().numpy().astype(int) | |
if isinstance(kpts, torch.Tensor): | |
kpts = kpts.cpu().numpy() | |
if isinstance(batch_idx, torch.Tensor): | |
batch_idx = batch_idx.cpu().numpy() | |
max_size = 1920 # max image size | |
bs, _, h, w = images.shape # batch size, _, height, width | |
bs = min(bs, max_subplots) # limit plot images | |
ns = np.ceil(bs**0.5) # number of subplots (square) | |
if np.max(images[0]) <= 1: | |
images *= 255 # de-normalise (optional) | |
# Build Image | |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |
for i in range(bs): | |
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0) | |
# Resize (optional) | |
scale = max_size / ns / max(h, w) | |
if scale < 1: | |
h = math.ceil(scale * h) | |
w = math.ceil(scale * w) | |
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) | |
# Annotate | |
fs = int((h + w) * ns * 0.01) # font size | |
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) | |
for i in range(bs): | |
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders | |
if paths: | |
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames | |
if len(cls) > 0: | |
idx = batch_idx == i | |
classes = cls[idx].astype("int") | |
labels = confs is None | |
if len(bboxes): | |
boxes = bboxes[idx] | |
conf = confs[idx] if confs is not None else None # check for confidence presence (label vs pred) | |
is_obb = boxes.shape[-1] == 5 # xywhr | |
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes) | |
if len(boxes): | |
if boxes[:, :4].max() <= 1.1: # if normalized with tolerance 0.1 | |
boxes[..., 0::2] *= w # scale to pixels | |
boxes[..., 1::2] *= h | |
elif scale < 1: # absolute coords need scale if image scales | |
boxes[..., :4] *= scale | |
boxes[..., 0::2] += x | |
boxes[..., 1::2] += y | |
for j, box in enumerate(boxes.astype(np.int64).tolist()): | |
c = classes[j] | |
color = colors(c) | |
c = names.get(c, c) if names else c | |
if labels or conf[j] > conf_thres: | |
label = f"{c}" if labels else f"{c} {conf[j]:.1f}" | |
annotator.box_label(box, label, color=color, rotated=is_obb) | |
elif len(classes): | |
for c in classes: | |
color = colors(c) | |
c = names.get(c, c) if names else c | |
annotator.text((x, y), f"{c}", txt_color=color, box_style=True) | |
# Plot keypoints | |
if len(kpts): | |
kpts_ = kpts[idx].copy() | |
if len(kpts_): | |
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01 | |
kpts_[..., 0] *= w # scale to pixels | |
kpts_[..., 1] *= h | |
elif scale < 1: # absolute coords need scale if image scales | |
kpts_ *= scale | |
kpts_[..., 0] += x | |
kpts_[..., 1] += y | |
for j in range(len(kpts_)): | |
if labels or conf[j] > conf_thres: | |
annotator.kpts(kpts_[j]) | |
# Plot masks | |
if len(masks): | |
if idx.shape[0] == masks.shape[0]: # overlap_masks=False | |
image_masks = masks[idx] | |
else: # overlap_masks=True | |
image_masks = masks[[i]] # (1, 640, 640) | |
nl = idx.sum() | |
index = np.arange(nl).reshape((nl, 1, 1)) + 1 | |
image_masks = np.repeat(image_masks, nl, axis=0) | |
image_masks = np.where(image_masks == index, 1.0, 0.0) | |
im = np.asarray(annotator.im).copy() | |
for j in range(len(image_masks)): | |
if labels or conf[j] > conf_thres: | |
color = colors(classes[j]) | |
mh, mw = image_masks[j].shape | |
if mh != h or mw != w: | |
mask = image_masks[j].astype(np.uint8) | |
mask = cv2.resize(mask, (w, h)) | |
mask = mask.astype(bool) | |
else: | |
mask = image_masks[j].astype(bool) | |
with contextlib.suppress(Exception): | |
im[y : y + h, x : x + w, :][mask] = ( | |
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6 | |
) | |
annotator.fromarray(im) | |
if not save: | |
return np.asarray(annotator.im) | |
annotator.im.save(fname) # save | |
if on_plot: | |
on_plot(fname) | |
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None): | |
""" | |
Plot training results from a results CSV file. The function supports various types of data including segmentation, | |
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located. | |
Args: | |
file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'. | |
dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''. | |
segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False. | |
pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False. | |
classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False. | |
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument. | |
Defaults to None. | |
Example: | |
```python | |
from ultralytics.utils.plotting import plot_results | |
plot_results('path/to/results.csv', segment=True) | |
``` | |
""" | |
import pandas as pd | |
from scipy.ndimage import gaussian_filter1d | |
save_dir = Path(file).parent if file else Path(dir) | |
if classify: | |
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True) | |
index = [1, 4, 2, 3] | |
elif segment: | |
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) | |
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12] | |
elif pose: | |
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True) | |
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13] | |
else: | |
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | |
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7] | |
ax = ax.ravel() | |
files = list(save_dir.glob("results*.csv")) | |
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot." | |
for f in files: | |
try: | |
data = pd.read_csv(f) | |
s = [x.strip() for x in data.columns] | |
x = data.values[:, 0] | |
for i, j in enumerate(index): | |
y = data.values[:, j].astype("float") | |
# y[y == 0] = np.nan # don't show zero values | |
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results | |
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line | |
ax[i].set_title(s[j], fontsize=12) | |
# if j in [8, 9, 10]: # share train and val loss y axes | |
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
except Exception as e: | |
LOGGER.warning(f"WARNING: Plotting error for {f}: {e}") | |
ax[1].legend() | |
fname = save_dir / "results.png" | |
fig.savefig(fname, dpi=200) | |
plt.close() | |
if on_plot: | |
on_plot(fname) | |
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"): | |
""" | |
Plots a scatter plot with points colored based on a 2D histogram. | |
Args: | |
v (array-like): Values for the x-axis. | |
f (array-like): Values for the y-axis. | |
bins (int, optional): Number of bins for the histogram. Defaults to 20. | |
cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'. | |
alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8. | |
edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'. | |
Examples: | |
>>> v = np.random.rand(100) | |
>>> f = np.random.rand(100) | |
>>> plt_color_scatter(v, f) | |
""" | |
# Calculate 2D histogram and corresponding colors | |
hist, xedges, yedges = np.histogram2d(v, f, bins=bins) | |
colors = [ | |
hist[ | |
min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1), | |
min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1), | |
] | |
for i in range(len(v)) | |
] | |
# Scatter plot | |
plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors) | |
def plot_tune_results(csv_file="tune_results.csv"): | |
""" | |
Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key | |
in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots. | |
Args: | |
csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'. | |
Examples: | |
>>> plot_tune_results('path/to/tune_results.csv') | |
""" | |
import pandas as pd | |
from scipy.ndimage import gaussian_filter1d | |
# Scatter plots for each hyperparameter | |
csv_file = Path(csv_file) | |
data = pd.read_csv(csv_file) | |
num_metrics_columns = 1 | |
keys = [x.strip() for x in data.columns][num_metrics_columns:] | |
x = data.values | |
fitness = x[:, 0] # fitness | |
j = np.argmax(fitness) # max fitness index | |
n = math.ceil(len(keys) ** 0.5) # columns and rows in plot | |
plt.figure(figsize=(10, 10), tight_layout=True) | |
for i, k in enumerate(keys): | |
v = x[:, i + num_metrics_columns] | |
mu = v[j] # best single result | |
plt.subplot(n, n, i + 1) | |
plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none") | |
plt.plot(mu, fitness.max(), "k+", markersize=15) | |
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters | |
plt.tick_params(axis="both", labelsize=8) # Set axis label size to 8 | |
if i % n != 0: | |
plt.yticks([]) | |
file = csv_file.with_name("tune_scatter_plots.png") # filename | |
plt.savefig(file, dpi=200) | |
plt.close() | |
LOGGER.info(f"Saved {file}") | |
# Fitness vs iteration | |
x = range(1, len(fitness) + 1) | |
plt.figure(figsize=(10, 6), tight_layout=True) | |
plt.plot(x, fitness, marker="o", linestyle="none", label="fitness") | |
plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2) # smoothing line | |
plt.title("Fitness vs Iteration") | |
plt.xlabel("Iteration") | |
plt.ylabel("Fitness") | |
plt.grid(True) | |
plt.legend() | |
file = csv_file.with_name("tune_fitness.png") # filename | |
plt.savefig(file, dpi=200) | |
plt.close() | |
LOGGER.info(f"Saved {file}") | |
def output_to_target(output, max_det=300): | |
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" | |
targets = [] | |
for i, o in enumerate(output): | |
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) | |
j = torch.full((conf.shape[0], 1), i) | |
targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1)) | |
targets = torch.cat(targets, 0).numpy() | |
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1] | |
def output_to_rotated_target(output, max_det=300): | |
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" | |
targets = [] | |
for i, o in enumerate(output): | |
box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1) | |
j = torch.full((conf.shape[0], 1), i) | |
targets.append(torch.cat((j, cls, box, angle, conf), 1)) | |
targets = torch.cat(targets, 0).numpy() | |
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1] | |
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")): | |
""" | |
Visualize feature maps of a given model module during inference. | |
Args: | |
x (torch.Tensor): Features to be visualized. | |
module_type (str): Module type. | |
stage (int): Module stage within the model. | |
n (int, optional): Maximum number of feature maps to plot. Defaults to 32. | |
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp'). | |
""" | |
for m in ["Detect", "Pose", "Segment"]: | |
if m in module_type: | |
return | |
_, channels, height, width = x.shape # batch, channels, height, width | |
if height > 1 and width > 1: | |
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename | |
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels | |
n = min(n, channels) # number of plots | |
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols | |
ax = ax.ravel() | |
plt.subplots_adjust(wspace=0.05, hspace=0.05) | |
for i in range(n): | |
ax[i].imshow(blocks[i].squeeze()) # cmap='gray' | |
ax[i].axis("off") | |
LOGGER.info(f"Saving {f}... ({n}/{channels})") | |
plt.savefig(f, dpi=300, bbox_inches="tight") | |
plt.close() | |
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save | |