Spaces:
Sleeping
Sleeping
File size: 44,705 Bytes
53ad959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import math
import warnings
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version
from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
from .checks import check_font, check_version, is_ascii
from .files import increment_path
class Colors:
"""
Ultralytics default color palette https://ultralytics.com/.
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
RGB values.
Attributes:
palette (list of tuple): List of RGB color values.
n (int): The number of colors in the palette.
pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
"""
def __init__(self):
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
hexs = (
"FF3838",
"FF9D97",
"FF701F",
"FFB21D",
"CFD231",
"48F90A",
"92CC17",
"3DDB86",
"1A9334",
"00D4BB",
"2C99A8",
"00C2FF",
"344593",
"6473FF",
"0018EC",
"8438FF",
"520085",
"CB38FF",
"FF95C8",
"FF37C7",
)
self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
self.n = len(self.palette)
self.pose_palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
],
dtype=np.uint8,
)
def __call__(self, i, bgr=False):
"""Converts hex color codes to RGB values."""
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h):
"""Converts hex color codes to RGB values (i.e. default PIL order)."""
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
class Annotator:
"""
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.
Attributes:
im (Image.Image or numpy array): The image to annotate.
pil (bool): Whether to use PIL or cv2 for drawing annotations.
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
lw (float): Line width for drawing.
skeleton (List[List[int]]): Skeleton structure for keypoints.
limb_color (List[int]): Color palette for limbs.
kpt_color (List[int]): Color palette for keypoints.
"""
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
input_is_pil = isinstance(im, Image.Image)
self.pil = pil or non_ascii or input_is_pil
self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
if self.pil: # use PIL
self.im = im if input_is_pil else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
try:
font = check_font("Arial.Unicode.ttf" if non_ascii else font)
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
self.font = ImageFont.truetype(str(font), size)
except Exception:
self.font = ImageFont.load_default()
# Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
if check_version(pil_version, "9.2.0"):
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
else: # use cv2
assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
self.im = im if im.flags.writeable else im.copy()
self.tf = max(self.lw - 1, 1) # font thickness
self.sf = self.lw / 3 # font scale
# Pose
self.skeleton = [
[16, 14],
[14, 12],
[17, 15],
[15, 13],
[12, 13],
[6, 12],
[7, 13],
[6, 7],
[6, 8],
[7, 9],
[8, 10],
[9, 11],
[2, 3],
[1, 2],
[1, 3],
[2, 4],
[3, 5],
[4, 6],
[5, 7],
]
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
"""Add one xyxy box to image with label."""
if isinstance(box, torch.Tensor):
box = box.tolist()
if self.pil or not is_ascii(label):
if rotated:
p1 = box[0]
# NOTE: PIL-version polygon needs tuple type.
self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
else:
p1 = (box[0], box[1])
self.draw.rectangle(box, width=self.lw, outline=color) # box
if label:
w, h = self.font.getsize(label) # text width, height
outside = p1[1] - h >= 0 # label fits outside box
self.draw.rectangle(
(p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
fill=color,
)
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
else: # cv2
if rotated:
p1 = [int(b) for b in box[0]]
# NOTE: cv2-version polylines needs np.asarray type.
cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
else:
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
if label:
w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
self.im,
label,
(p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
0,
self.sf,
txt_color,
thickness=self.tf,
lineType=cv2.LINE_AA,
)
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
"""
Plot masks on image.
Args:
masks (tensor): Predicted masks on cuda, shape: [n, h, w]
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
"""
if self.pil:
# Convert to numpy first
self.im = np.asarray(self.im).copy()
if len(masks) == 0:
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
if im_gpu.device != masks.device:
im_gpu = im_gpu.to(masks.device)
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3)
colors = colors[:, None, None] # shape(n,1,1,3)
masks = masks.unsqueeze(3) # shape(n,h,w,1)
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
inv_alpha_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
mcs = masks_color.max(dim=0).values # shape(n,h,w,3)
im_gpu = im_gpu.flip(dims=[0]) # flip channel
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
im_mask = im_gpu * 255
im_mask_np = im_mask.byte().cpu().numpy()
self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
if self.pil:
# Convert im back to PIL and update draw
self.fromarray(self.im)
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
"""
Plot keypoints on the image.
Args:
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
radius (int, optional): Radius of the drawn keypoints. Default is 5.
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
for human pose. Default is True.
Note:
`kpt_line=True` currently only supports human pose plotting.
"""
if self.pil:
# Convert to numpy first
self.im = np.asarray(self.im).copy()
nkpt, ndim = kpts.shape
is_pose = nkpt == 17 and ndim in {2, 3}
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
for i, k in enumerate(kpts):
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < 0.5:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
if kpt_line:
ndim = kpts.shape[-1]
for i, sk in enumerate(self.skeleton):
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
if ndim == 3:
conf1 = kpts[(sk[0] - 1), 2]
conf2 = kpts[(sk[1] - 1), 2]
if conf1 < 0.5 or conf2 < 0.5:
continue
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
continue
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
continue
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
if self.pil:
# Convert im back to PIL and update draw
self.fromarray(self.im)
def rectangle(self, xy, fill=None, outline=None, width=1):
"""Add rectangle to image (PIL-only)."""
self.draw.rectangle(xy, fill, outline, width)
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
"""Adds text to an image using PIL or cv2."""
if anchor == "bottom": # start y from font bottom
w, h = self.font.getsize(text) # text width, height
xy[1] += 1 - h
if self.pil:
if box_style:
w, h = self.font.getsize(text)
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
# Using `txt_color` for background and draw fg with white color
txt_color = (255, 255, 255)
if "\n" in text:
lines = text.split("\n")
_, h = self.font.getsize(text)
for line in lines:
self.draw.text(xy, line, fill=txt_color, font=self.font)
xy[1] += h
else:
self.draw.text(xy, text, fill=txt_color, font=self.font)
else:
if box_style:
w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
outside = xy[1] - h >= 3
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
# Using `txt_color` for background and draw fg with white color
txt_color = (255, 255, 255)
cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)
def fromarray(self, im):
"""Update self.im from a numpy array."""
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
def result(self):
"""Return annotated image as array."""
return np.asarray(self.im)
def show(self, title=None):
"""Show the annotated image."""
Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)
def save(self, filename="image.jpg"):
"""Save the annotated image to 'filename'."""
cv2.imwrite(filename, np.asarray(self.im))
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
"""
Draw region line.
Args:
reg_pts (list): Region Points (for line 2 points, for region 4 points)
color (tuple): Region Color value
thickness (int): Region area thickness value
"""
cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
"""
Draw centroid point and track trails.
Args:
track (list): object tracking points for trails display
color (tuple): tracks line color
track_thickness (int): track line thickness value
"""
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)
def count_labels(self, counts=0, count_txt_size=2, color=(255, 255, 255), txt_color=(0, 0, 0)):
"""
Plot counts for object counter.
Args:
counts (int): objects counts value
count_txt_size (int): text size for counts display
color (tuple): background color of counts display
txt_color (tuple): text color of counts display
"""
self.tf = count_txt_size
tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1
tf = max(tl - 1, 1)
# Get text size for in_count and out_count
t_size_in = cv2.getTextSize(str(counts), 0, fontScale=tl / 2, thickness=tf)[0]
# Calculate positions for counts label
text_width = t_size_in[0]
text_x = (self.im.shape[1] - text_width) // 2 # Center x-coordinate
text_y = t_size_in[1]
# Create a rounded rectangle for in_count
cv2.rectangle(
self.im, (text_x - 5, text_y - 5), (text_x + text_width + 7, text_y + t_size_in[1] + 7), color, -1
)
cv2.putText(
self.im, str(counts), (text_x, text_y + t_size_in[1]), 0, tl / 2, txt_color, self.tf, lineType=cv2.LINE_AA
)
@staticmethod
def estimate_pose_angle(a, b, c):
"""
Calculate the pose angle for object.
Args:
a (float) : The value of pose point a
b (float): The value of pose point b
c (float): The value o pose point c
Returns:
angle (degree): Degree value of angle between three points
"""
a, b, c = np.array(a), np.array(b), np.array(c)
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2):
"""
Draw specific keypoints for gym steps counting.
Args:
keypoints (list): list of keypoints data to be plotted
indices (list): keypoints ids list to be plotted
shape (tuple): imgsz for model inference
radius (int): Keypoint radius value
"""
for i, k in enumerate(keypoints):
if i in indices:
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < 0.5:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
return self.im
def plot_angle_and_count_and_stage(self, angle_text, count_text, stage_text, center_kpt, line_thickness=2):
"""
Plot the pose angle, count value and step stage.
Args:
angle_text (str): angle value for workout monitoring
count_text (str): counts value for workout monitoring
stage_text (str): stage decision for workout monitoring
center_kpt (int): centroid pose index for workout monitoring
line_thickness (int): thickness for text display
"""
angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
font_scale = 0.6 + (line_thickness / 10.0)
# Draw angle
(angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, font_scale, line_thickness)
angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (line_thickness * 2))
cv2.rectangle(
self.im,
angle_background_position,
(
angle_background_position[0] + angle_background_size[0],
angle_background_position[1] + angle_background_size[1],
),
(255, 255, 255),
-1,
)
cv2.putText(self.im, angle_text, angle_text_position, 0, font_scale, (0, 0, 0), line_thickness)
# Draw Counts
(count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, font_scale, line_thickness)
count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
count_background_position = (
angle_background_position[0],
angle_background_position[1] + angle_background_size[1] + 5,
)
count_background_size = (count_text_width + 10, count_text_height + 10 + (line_thickness * 2))
cv2.rectangle(
self.im,
count_background_position,
(
count_background_position[0] + count_background_size[0],
count_background_position[1] + count_background_size[1],
),
(255, 255, 255),
-1,
)
cv2.putText(self.im, count_text, count_text_position, 0, font_scale, (0, 0, 0), line_thickness)
# Draw Stage
(stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, font_scale, line_thickness)
stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
stage_background_size = (stage_text_width + 10, stage_text_height + 10)
cv2.rectangle(
self.im,
stage_background_position,
(
stage_background_position[0] + stage_background_size[0],
stage_background_position[1] + stage_background_size[1],
),
(255, 255, 255),
-1,
)
cv2.putText(self.im, stage_text, stage_text_position, 0, font_scale, (0, 0, 0), line_thickness)
def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None):
"""
Function for drawing segmented object in bounding box shape.
Args:
mask (list): masks data list for instance segmentation area plotting
mask_color (tuple): mask foreground color
det_label (str): Detection label text
track_label (str): Tracking label text
"""
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
label = f"Track ID: {track_label}" if track_label else det_label
text_size, _ = cv2.getTextSize(label, 0, 0.7, 1)
cv2.rectangle(
self.im,
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
(int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)),
mask_color,
-1,
)
cv2.putText(
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2
)
def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
"""
Plot the distance and line on frame.
Args:
distance_m (float): Distance between two bbox centroids in meters.
distance_mm (float): Distance between two bbox centroids in millimeters.
centroids (list): Bounding box centroids data.
line_color (RGB): Distance line color.
centroid_color (RGB): Bounding box centroid color.
"""
(text_width_m, text_height_m), _ = cv2.getTextSize(
f"Distance M: {distance_m:.2f}m", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
)
cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), (255, 255, 255), -1)
cv2.putText(
self.im,
f"Distance M: {distance_m:.2f}m",
(20, 50),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 0, 0),
2,
cv2.LINE_AA,
)
(text_width_mm, text_height_mm), _ = cv2.getTextSize(
f"Distance MM: {distance_mm:.2f}mm", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
)
cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), (255, 255, 255), -1)
cv2.putText(
self.im,
f"Distance MM: {distance_mm:.2f}mm",
(20, 100),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 0, 0),
2,
cv2.LINE_AA,
)
cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
cv2.circle(self.im, centroids[1], 6, centroid_color, -1)
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10):
"""
Function for pinpoint human-vision eye mapping and plotting.
Args:
box (list): Bounding box coordinates
center_point (tuple): center point for vision eye view
color (tuple): object centroid and line color value
pin_color (tuple): visioneye point color value
thickness (int): int value for line thickness
pins_radius (int): visioneye point radius value
"""
center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
cv2.circle(self.im, center_point, pins_radius, pin_color, -1)
cv2.circle(self.im, center_bbox, pins_radius, color, -1)
cv2.line(self.im, center_point, center_bbox, color, thickness)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
"""Plot training labels including class histograms and box statistics."""
import pandas as pd
import seaborn as sn
# Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
warnings.filterwarnings("ignore", category=FutureWarning)
# Plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
nc = int(cls.max() + 1) # number of classes
boxes = boxes[:1000000] # limit to 1M boxes
x = pd.DataFrame(boxes, columns=["x", "y", "width", "height"])
# Seaborn correlogram
sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
plt.close()
# Matplotlib labels
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
for i in range(nc):
y[2].patches[i].set_color([x / 255 for x in colors(i)])
ax[0].set_ylabel("instances")
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel("classes")
sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
# Rectangles
boxes[:, 0:2] = 0.5 # center
boxes = ops.xywh2xyxy(boxes) * 1000
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
for cls, box in zip(cls[:500], boxes[:500]):
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis("off")
for a in [0, 1, 2, 3]:
for s in ["top", "right", "left", "bottom"]:
ax[a].spines[s].set_visible(False)
fname = save_dir / "labels.jpg"
plt.savefig(fname, dpi=200)
plt.close()
if on_plot:
on_plot(fname)
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
"""
Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.
This function takes a bounding box and an image, and then saves a cropped portion of the image according
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
adjustments to the bounding box.
Args:
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
im (numpy.ndarray): The input image.
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.
Returns:
(numpy.ndarray): The cropped image.
Example:
```python
from ultralytics.utils.plotting import save_one_box
xyxy = [50, 50, 150, 150]
im = cv2.imread('image.jpg')
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
```
"""
if not isinstance(xyxy, torch.Tensor): # may be list
xyxy = torch.stack(xyxy)
b = ops.xyxy2xywh(xyxy.view(-1, 4)) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = ops.xywh2xyxy(b).long()
xyxy = ops.clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix(".jpg"))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop
@threaded
def plot_images(
images,
batch_idx,
cls,
bboxes=np.zeros(0, dtype=np.float32),
confs=None,
masks=np.zeros(0, dtype=np.uint8),
kpts=np.zeros((0, 51), dtype=np.float32),
paths=None,
fname="images.jpg",
names=None,
on_plot=None,
max_subplots=16,
save=True,
conf_thres=0.25,
):
"""Plot image grid with labels."""
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(cls, torch.Tensor):
cls = cls.cpu().numpy()
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.cpu().numpy()
if isinstance(masks, torch.Tensor):
masks = masks.cpu().numpy().astype(int)
if isinstance(kpts, torch.Tensor):
kpts = kpts.cpu().numpy()
if isinstance(batch_idx, torch.Tensor):
batch_idx = batch_idx.cpu().numpy()
max_size = 1920 # max image size
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs**0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i in range(bs):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(bs):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(cls) > 0:
idx = batch_idx == i
classes = cls[idx].astype("int")
labels = confs is None
if len(bboxes):
boxes = bboxes[idx]
conf = confs[idx] if confs is not None else None # check for confidence presence (label vs pred)
is_obb = boxes.shape[-1] == 5 # xywhr
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
if len(boxes):
if boxes[:, :4].max() <= 1.1: # if normalized with tolerance 0.1
boxes[..., 0::2] *= w # scale to pixels
boxes[..., 1::2] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes[..., :4] *= scale
boxes[..., 0::2] += x
boxes[..., 1::2] += y
for j, box in enumerate(boxes.astype(np.int64).tolist()):
c = classes[j]
color = colors(c)
c = names.get(c, c) if names else c
if labels or conf[j] > conf_thres:
label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
annotator.box_label(box, label, color=color, rotated=is_obb)
elif len(classes):
for c in classes:
color = colors(c)
c = names.get(c, c) if names else c
annotator.text((x, y), f"{c}", txt_color=color, box_style=True)
# Plot keypoints
if len(kpts):
kpts_ = kpts[idx].copy()
if len(kpts_):
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01
kpts_[..., 0] *= w # scale to pixels
kpts_[..., 1] *= h
elif scale < 1: # absolute coords need scale if image scales
kpts_ *= scale
kpts_[..., 0] += x
kpts_[..., 1] += y
for j in range(len(kpts_)):
if labels or conf[j] > conf_thres:
annotator.kpts(kpts_[j])
# Plot masks
if len(masks):
if idx.shape[0] == masks.shape[0]: # overlap_masks=False
image_masks = masks[idx]
else: # overlap_masks=True
image_masks = masks[[i]] # (1, 640, 640)
nl = idx.sum()
index = np.arange(nl).reshape((nl, 1, 1)) + 1
image_masks = np.repeat(image_masks, nl, axis=0)
image_masks = np.where(image_masks == index, 1.0, 0.0)
im = np.asarray(annotator.im).copy()
for j in range(len(image_masks)):
if labels or conf[j] > conf_thres:
color = colors(classes[j])
mh, mw = image_masks[j].shape
if mh != h or mw != w:
mask = image_masks[j].astype(np.uint8)
mask = cv2.resize(mask, (w, h))
mask = mask.astype(bool)
else:
mask = image_masks[j].astype(bool)
with contextlib.suppress(Exception):
im[y : y + h, x : x + w, :][mask] = (
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
)
annotator.fromarray(im)
if not save:
return np.asarray(annotator.im)
annotator.im.save(fname) # save
if on_plot:
on_plot(fname)
@plt_settings()
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
"""
Plot training results from a results CSV file. The function supports various types of data including segmentation,
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.
Args:
file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
Defaults to None.
Example:
```python
from ultralytics.utils.plotting import plot_results
plot_results('path/to/results.csv', segment=True)
```
"""
import pandas as pd
from scipy.ndimage import gaussian_filter1d
save_dir = Path(file).parent if file else Path(dir)
if classify:
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
index = [1, 4, 2, 3]
elif segment:
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
elif pose:
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
else:
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
ax = ax.ravel()
files = list(save_dir.glob("results*.csv"))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate(index):
y = data.values[:, j].astype("float")
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
ax[1].legend()
fname = save_dir / "results.png"
fig.savefig(fname, dpi=200)
plt.close()
if on_plot:
on_plot(fname)
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
"""
Plots a scatter plot with points colored based on a 2D histogram.
Args:
v (array-like): Values for the x-axis.
f (array-like): Values for the y-axis.
bins (int, optional): Number of bins for the histogram. Defaults to 20.
cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.
Examples:
>>> v = np.random.rand(100)
>>> f = np.random.rand(100)
>>> plt_color_scatter(v, f)
"""
# Calculate 2D histogram and corresponding colors
hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
colors = [
hist[
min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
]
for i in range(len(v))
]
# Scatter plot
plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)
def plot_tune_results(csv_file="tune_results.csv"):
"""
Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.
Args:
csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.
Examples:
>>> plot_tune_results('path/to/tune_results.csv')
"""
import pandas as pd
from scipy.ndimage import gaussian_filter1d
# Scatter plots for each hyperparameter
csv_file = Path(csv_file)
data = pd.read_csv(csv_file)
num_metrics_columns = 1
keys = [x.strip() for x in data.columns][num_metrics_columns:]
x = data.values
fitness = x[:, 0] # fitness
j = np.argmax(fitness) # max fitness index
n = math.ceil(len(keys) ** 0.5) # columns and rows in plot
plt.figure(figsize=(10, 10), tight_layout=True)
for i, k in enumerate(keys):
v = x[:, i + num_metrics_columns]
mu = v[j] # best single result
plt.subplot(n, n, i + 1)
plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
plt.plot(mu, fitness.max(), "k+", markersize=15)
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters
plt.tick_params(axis="both", labelsize=8) # Set axis label size to 8
if i % n != 0:
plt.yticks([])
file = csv_file.with_name("tune_scatter_plots.png") # filename
plt.savefig(file, dpi=200)
plt.close()
LOGGER.info(f"Saved {file}")
# Fitness vs iteration
x = range(1, len(fitness) + 1)
plt.figure(figsize=(10, 6), tight_layout=True)
plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2) # smoothing line
plt.title("Fitness vs Iteration")
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.grid(True)
plt.legend()
file = csv_file.with_name("tune_fitness.png") # filename
plt.savefig(file, dpi=200)
plt.close()
LOGGER.info(f"Saved {file}")
def output_to_target(output, max_det=300):
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]
def output_to_rotated_target(output, max_det=300):
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
targets = []
for i, o in enumerate(output):
box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, box, angle, conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
"""
Visualize feature maps of a given model module during inference.
Args:
x (torch.Tensor): Features to be visualized.
module_type (str): Module type.
stage (int): Module stage within the model.
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
"""
for m in ["Detect", "Pose", "Segment"]:
if m in module_type:
return
_, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis("off")
LOGGER.info(f"Saving {f}... ({n}/{channels})")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
|