Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from ultralytics.engine.results import Results | |
from ultralytics.models.yolo.detect.predict import DetectionPredictor | |
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops | |
class PosePredictor(DetectionPredictor): | |
""" | |
A class extending the DetectionPredictor class for prediction based on a pose model. | |
Example: | |
```python | |
from ultralytics.utils import ASSETS | |
from ultralytics.models.yolo.pose import PosePredictor | |
args = dict(model='yolov8n-pose.pt', source=ASSETS) | |
predictor = PosePredictor(overrides=args) | |
predictor.predict_cli() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initializes PosePredictor, sets task to 'pose' and logs a warning for using 'mps' as device.""" | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.task = "pose" | |
if isinstance(self.args.device, str) and self.args.device.lower() == "mps": | |
LOGGER.warning( | |
"WARNING β οΈ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " | |
"See https://github.com/ultralytics/ultralytics/issues/4031." | |
) | |
def postprocess(self, preds, img, orig_imgs): | |
"""Return detection results for a given input image or list of images.""" | |
preds = ops.non_max_suppression( | |
preds, | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
classes=self.args.classes, | |
nc=len(self.model.names), | |
) | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round() | |
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] | |
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape) | |
img_path = self.batch[0][i] | |
results.append( | |
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts) | |
) | |
return results | |