# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, LOGGER, ops class PosePredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on a pose model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.pose import PosePredictor args = dict(model='yolov8n-pose.pt', source=ASSETS) predictor = PosePredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initializes PosePredictor, sets task to 'pose' and logs a warning for using 'mps' as device.""" super().__init__(cfg, overrides, _callbacks) self.args.task = "pose" if isinstance(self.args.device, str) and self.args.device.lower() == "mps": LOGGER.warning( "WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " "See https://github.com/ultralytics/ultralytics/issues/4031." ) def postprocess(self, preds, img, orig_imgs): """Return detection results for a given input image or list of images.""" preds = ops.non_max_suppression( preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes, nc=len(self.model.names), ) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round() pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape) img_path = self.batch[0][i] results.append( Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts) ) return results