Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING | |
try: | |
assert not TESTS_RUNNING # do not log pytest | |
assert SETTINGS["clearml"] is True # verify integration is enabled | |
import clearml | |
from clearml import Task | |
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO | |
from clearml.binding.matplotlib_bind import PatchedMatplotlib | |
assert hasattr(clearml, "__version__") # verify package is not directory | |
except (ImportError, AssertionError): | |
clearml = None | |
def _log_debug_samples(files, title="Debug Samples") -> None: | |
""" | |
Log files (images) as debug samples in the ClearML task. | |
Args: | |
files (list): A list of file paths in PosixPath format. | |
title (str): A title that groups together images with the same values. | |
""" | |
import re | |
if task := Task.current_task(): | |
for f in files: | |
if f.exists(): | |
it = re.search(r"_batch(\d+)", f.name) | |
iteration = int(it.groups()[0]) if it else 0 | |
task.get_logger().report_image( | |
title=title, series=f.name.replace(it.group(), ""), local_path=str(f), iteration=iteration | |
) | |
def _log_plot(title, plot_path) -> None: | |
""" | |
Log an image as a plot in the plot section of ClearML. | |
Args: | |
title (str): The title of the plot. | |
plot_path (str): The path to the saved image file. | |
""" | |
import matplotlib.image as mpimg | |
import matplotlib.pyplot as plt | |
img = mpimg.imread(plot_path) | |
fig = plt.figure() | |
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks | |
ax.imshow(img) | |
Task.current_task().get_logger().report_matplotlib_figure( | |
title=title, series="", figure=fig, report_interactive=False | |
) | |
def on_pretrain_routine_start(trainer): | |
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" | |
try: | |
if task := Task.current_task(): | |
# Make sure the automatic pytorch and matplotlib bindings are disabled! | |
# We are logging these plots and model files manually in the integration | |
PatchPyTorchModelIO.update_current_task(None) | |
PatchedMatplotlib.update_current_task(None) | |
else: | |
task = Task.init( | |
project_name=trainer.args.project or "YOLOv8", | |
task_name=trainer.args.name, | |
tags=["YOLOv8"], | |
output_uri=True, | |
reuse_last_task_id=False, | |
auto_connect_frameworks={"pytorch": False, "matplotlib": False}, | |
) | |
LOGGER.warning( | |
"ClearML Initialized a new task. If you want to run remotely, " | |
"please add clearml-init and connect your arguments before initializing YOLO." | |
) | |
task.connect(vars(trainer.args), name="General") | |
except Exception as e: | |
LOGGER.warning(f"WARNING β οΈ ClearML installed but not initialized correctly, not logging this run. {e}") | |
def on_train_epoch_end(trainer): | |
"""Logs debug samples for the first epoch of YOLO training and report current training progress.""" | |
if task := Task.current_task(): | |
# Log debug samples | |
if trainer.epoch == 1: | |
_log_debug_samples(sorted(trainer.save_dir.glob("train_batch*.jpg")), "Mosaic") | |
# Report the current training progress | |
for k, v in trainer.label_loss_items(trainer.tloss, prefix="train").items(): | |
task.get_logger().report_scalar("train", k, v, iteration=trainer.epoch) | |
for k, v in trainer.lr.items(): | |
task.get_logger().report_scalar("lr", k, v, iteration=trainer.epoch) | |
def on_fit_epoch_end(trainer): | |
"""Reports model information to logger at the end of an epoch.""" | |
if task := Task.current_task(): | |
# You should have access to the validation bboxes under jdict | |
task.get_logger().report_scalar( | |
title="Epoch Time", series="Epoch Time", value=trainer.epoch_time, iteration=trainer.epoch | |
) | |
for k, v in trainer.metrics.items(): | |
task.get_logger().report_scalar("val", k, v, iteration=trainer.epoch) | |
if trainer.epoch == 0: | |
from ultralytics.utils.torch_utils import model_info_for_loggers | |
for k, v in model_info_for_loggers(trainer).items(): | |
task.get_logger().report_single_value(k, v) | |
def on_val_end(validator): | |
"""Logs validation results including labels and predictions.""" | |
if Task.current_task(): | |
# Log val_labels and val_pred | |
_log_debug_samples(sorted(validator.save_dir.glob("val*.jpg")), "Validation") | |
def on_train_end(trainer): | |
"""Logs final model and its name on training completion.""" | |
if task := Task.current_task(): | |
# Log final results, CM matrix + PR plots | |
files = [ | |
"results.png", | |
"confusion_matrix.png", | |
"confusion_matrix_normalized.png", | |
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")), | |
] | |
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter | |
for f in files: | |
_log_plot(title=f.stem, plot_path=f) | |
# Report final metrics | |
for k, v in trainer.validator.metrics.results_dict.items(): | |
task.get_logger().report_single_value(k, v) | |
# Log the final model | |
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) | |
callbacks = ( | |
{ | |
"on_pretrain_routine_start": on_pretrain_routine_start, | |
"on_train_epoch_end": on_train_epoch_end, | |
"on_fit_epoch_end": on_fit_epoch_end, | |
"on_val_end": on_val_end, | |
"on_train_end": on_train_end, | |
} | |
if clearml | |
else {} | |
) | |