# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING try: assert not TESTS_RUNNING # do not log pytest assert SETTINGS["clearml"] is True # verify integration is enabled import clearml from clearml import Task from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO from clearml.binding.matplotlib_bind import PatchedMatplotlib assert hasattr(clearml, "__version__") # verify package is not directory except (ImportError, AssertionError): clearml = None def _log_debug_samples(files, title="Debug Samples") -> None: """ Log files (images) as debug samples in the ClearML task. Args: files (list): A list of file paths in PosixPath format. title (str): A title that groups together images with the same values. """ import re if task := Task.current_task(): for f in files: if f.exists(): it = re.search(r"_batch(\d+)", f.name) iteration = int(it.groups()[0]) if it else 0 task.get_logger().report_image( title=title, series=f.name.replace(it.group(), ""), local_path=str(f), iteration=iteration ) def _log_plot(title, plot_path) -> None: """ Log an image as a plot in the plot section of ClearML. Args: title (str): The title of the plot. plot_path (str): The path to the saved image file. """ import matplotlib.image as mpimg import matplotlib.pyplot as plt img = mpimg.imread(plot_path) fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks ax.imshow(img) Task.current_task().get_logger().report_matplotlib_figure( title=title, series="", figure=fig, report_interactive=False ) def on_pretrain_routine_start(trainer): """Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" try: if task := Task.current_task(): # Make sure the automatic pytorch and matplotlib bindings are disabled! # We are logging these plots and model files manually in the integration PatchPyTorchModelIO.update_current_task(None) PatchedMatplotlib.update_current_task(None) else: task = Task.init( project_name=trainer.args.project or "YOLOv8", task_name=trainer.args.name, tags=["YOLOv8"], output_uri=True, reuse_last_task_id=False, auto_connect_frameworks={"pytorch": False, "matplotlib": False}, ) LOGGER.warning( "ClearML Initialized a new task. If you want to run remotely, " "please add clearml-init and connect your arguments before initializing YOLO." ) task.connect(vars(trainer.args), name="General") except Exception as e: LOGGER.warning(f"WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}") def on_train_epoch_end(trainer): """Logs debug samples for the first epoch of YOLO training and report current training progress.""" if task := Task.current_task(): # Log debug samples if trainer.epoch == 1: _log_debug_samples(sorted(trainer.save_dir.glob("train_batch*.jpg")), "Mosaic") # Report the current training progress for k, v in trainer.label_loss_items(trainer.tloss, prefix="train").items(): task.get_logger().report_scalar("train", k, v, iteration=trainer.epoch) for k, v in trainer.lr.items(): task.get_logger().report_scalar("lr", k, v, iteration=trainer.epoch) def on_fit_epoch_end(trainer): """Reports model information to logger at the end of an epoch.""" if task := Task.current_task(): # You should have access to the validation bboxes under jdict task.get_logger().report_scalar( title="Epoch Time", series="Epoch Time", value=trainer.epoch_time, iteration=trainer.epoch ) for k, v in trainer.metrics.items(): task.get_logger().report_scalar("val", k, v, iteration=trainer.epoch) if trainer.epoch == 0: from ultralytics.utils.torch_utils import model_info_for_loggers for k, v in model_info_for_loggers(trainer).items(): task.get_logger().report_single_value(k, v) def on_val_end(validator): """Logs validation results including labels and predictions.""" if Task.current_task(): # Log val_labels and val_pred _log_debug_samples(sorted(validator.save_dir.glob("val*.jpg")), "Validation") def on_train_end(trainer): """Logs final model and its name on training completion.""" if task := Task.current_task(): # Log final results, CM matrix + PR plots files = [ "results.png", "confusion_matrix.png", "confusion_matrix_normalized.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")), ] files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter for f in files: _log_plot(title=f.stem, plot_path=f) # Report final metrics for k, v in trainer.validator.metrics.results_dict.items(): task.get_logger().report_single_value(k, v) # Log the final model task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) callbacks = ( { "on_pretrain_routine_start": on_pretrain_routine_start, "on_train_epoch_end": on_train_epoch_end, "on_fit_epoch_end": on_fit_epoch_end, "on_val_end": on_val_end, "on_train_end": on_train_end, } if clearml else {} )