Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
from ultralytics.engine.results import Results | |
from ultralytics.models.yolo.detect.predict import DetectionPredictor | |
from ultralytics.utils import DEFAULT_CFG, ops | |
class OBBPredictor(DetectionPredictor): | |
""" | |
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model. | |
Example: | |
```python | |
from ultralytics.utils import ASSETS | |
from ultralytics.models.yolo.obb import OBBPredictor | |
args = dict(model='yolov8n-obb.pt', source=ASSETS) | |
predictor = OBBPredictor(overrides=args) | |
predictor.predict_cli() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initializes OBBPredictor with optional model and data configuration overrides.""" | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.task = "obb" | |
def postprocess(self, preds, img, orig_imgs): | |
"""Post-processes predictions and returns a list of Results objects.""" | |
preds = ops.non_max_suppression( | |
preds, | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
nc=len(self.model.names), | |
classes=self.args.classes, | |
rotated=True, | |
) | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]): | |
rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1)) | |
rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True) | |
# xywh, r, conf, cls | |
obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1) | |
results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb)) | |
return results | |