# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops class OBBPredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.obb import OBBPredictor args = dict(model='yolov8n-obb.pt', source=ASSETS) predictor = OBBPredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initializes OBBPredictor with optional model and data configuration overrides.""" super().__init__(cfg, overrides, _callbacks) self.args.task = "obb" def postprocess(self, preds, img, orig_imgs): """Post-processes predictions and returns a list of Results objects.""" preds = ops.non_max_suppression( preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), classes=self.args.classes, rotated=True, ) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]): rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1)) rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True) # xywh, r, conf, cls obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1) results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb)) return results