Whisper-Image / app.py
whispy's picture
Upload app.py
2d188e9
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from diffusers import StableDiffusionPipeline
MODEL_NAME = "whispy/whisper_italian"
YOUR_TOKEN="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"
# whisper model fine-tuned for italian
speech_ppl = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device="cpu"
)
# model summarizing text
summarizer_ppl = pipeline(
"summarization",
model="it5/it5-efficient-small-el32-news-summarization"
)
# model translating text from Italian to English
translator_ppl = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-it-en"
)
# model producing an image from text
image_ppl = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
#def transcribe(microphone, file_upload):
def transcribe(microphone):
warn_output = ""
# if (microphone is not None) and (file_upload is not None):
if (microphone is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
# elif (microphone is None) and (file_upload is None):
elif (microphone is None):
return "ERROR: You have to either use the microphone or upload an audio file"
# file = microphone if microphone is not None else file_upload
file = microphone
text = speech_ppl(file)["text"]
print("Text: ", text)
translate = translator_ppl(text)
print("Translate: ", translate)
translate = translate[0]["translation_text"]
print("Translate 2: ", translate)
print("Building image .....")
#image = image_ppl(translate).images[0]
#image = image_ppl(translate, num_inference_steps=15)["sample"]
prompt = "a photograph of an astronaut riding a horse"
image = image_ppl(prompt, num_inference_steps=15)
print("Image output: ", image)
print("Image: ", image.images)
#image.save("text-to-image.png")
return warn_output + text, translate, image
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
summary = summarizer(text)
summary = summary[0]["summary_text"]
translate = translator(summary)
translate = translate[0]["translation_text"]
return html_embed_str, text, summary, translate
#demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
#gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs=[gr.Textbox(label="Transcribed text"),
gr.Textbox(label="Summarized text"),
gr.Image(type="pil", label="Output image")],
layout="horizontal",
theme="huggingface",
title="Whisper Demo: Transcribe Audio to Image",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
'''
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
outputs=["html", "text", "text", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Demo: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files of"
" arbitrary length."
),
allow_flagging="never",
)
'''
'''
with demo:
#gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
gr.TabbedInterface(mf_transcribe, "Transcribe Audio to Image")
demo.launch(enable_queue=True)
'''
mf_transcribe.launch(enable_queue=True)