Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import pytube as pt | |
from transformers import pipeline | |
from diffusers import StableDiffusionPipeline | |
MODEL_NAME = "whispy/whisper_italian" | |
YOUR_TOKEN="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" | |
# whisper model fine-tuned for italian | |
speech_ppl = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device="cpu" | |
) | |
# model summarizing text | |
summarizer_ppl = pipeline( | |
"summarization", | |
model="it5/it5-efficient-small-el32-news-summarization" | |
) | |
# model translating text from Italian to English | |
translator_ppl = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-it-en" | |
) | |
# model producing an image from text | |
image_ppl = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) | |
#def transcribe(microphone, file_upload): | |
def transcribe(microphone): | |
warn_output = "" | |
# if (microphone is not None) and (file_upload is not None): | |
if (microphone is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
# elif (microphone is None) and (file_upload is None): | |
elif (microphone is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
# file = microphone if microphone is not None else file_upload | |
file = microphone | |
text = speech_ppl(file)["text"] | |
print("Text: ", text) | |
translate = translator_ppl(text) | |
print("Translate: ", translate) | |
translate = translate[0]["translation_text"] | |
print("Translate 2: ", translate) | |
print("Building image .....") | |
#image = image_ppl(translate).images[0] | |
#image = image_ppl(translate, num_inference_steps=15)["sample"] | |
prompt = "a photograph of an astronaut riding a horse" | |
image = image_ppl(prompt, num_inference_steps=15) | |
print("Image output: ", image) | |
print("Image: ", image.images) | |
#image.save("text-to-image.png") | |
return warn_output + text, translate, image | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
text = pipe("audio.mp3")["text"] | |
summary = summarizer(text) | |
summary = summary[0]["summary_text"] | |
translate = translator(summary) | |
translate = translate[0]["translation_text"] | |
return html_embed_str, text, summary, translate | |
#demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
#gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
], | |
outputs=[gr.Textbox(label="Transcribed text"), | |
gr.Textbox(label="Summarized text"), | |
gr.Image(type="pil", label="Output image")], | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Demo: Transcribe Audio to Image", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
''' | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], | |
outputs=["html", "text", "text", "text"], | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Demo: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
''' | |
''' | |
with demo: | |
#gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
gr.TabbedInterface(mf_transcribe, "Transcribe Audio to Image") | |
demo.launch(enable_queue=True) | |
''' | |
mf_transcribe.launch(enable_queue=True) | |