File size: 4,566 Bytes
0742ded
9cd344f
 
 
f528573
 
0742ded
9cd344f
1cd9790
 
 
9cd344f
 
 
1cd9790
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd344f
803b60d
 
9cd344f
803b60d
 
9cd344f
 
 
 
 
803b60d
 
9cd344f
 
803b60d
 
9cd344f
1cd9790
 
 
 
9cd344f
1cd9790
742f042
3da8fbb
8a64a4e
2d188e9
 
 
 
8a64a4e
9cd344f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc50911
9cd344f
 
 
 
 
803b60d
9cd344f
1cd9790
 
 
9cd344f
 
803b60d
9cd344f
 
 
 
 
 
 
803b60d
9cd344f
 
 
 
 
 
 
 
 
 
 
 
 
 
803b60d
dc50911
9cd344f
803b60d
 
9cd344f
 
dc50911
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from diffusers import StableDiffusionPipeline


MODEL_NAME = "whispy/whisper_italian"
YOUR_TOKEN="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"
# whisper model fine-tuned for italian
speech_ppl = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device="cpu"
    )
# model summarizing text
summarizer_ppl = pipeline(
    "summarization",
    model="it5/it5-efficient-small-el32-news-summarization"
    )
# model translating text from Italian to English
translator_ppl = pipeline(
    "translation", 
    model="Helsinki-NLP/opus-mt-it-en"
    )
# model producing an image from text
image_ppl = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)

#def transcribe(microphone, file_upload):
def transcribe(microphone):
    warn_output = ""
#    if (microphone is not None) and (file_upload is not None):
    if (microphone is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

#    elif (microphone is None) and (file_upload is None):
    elif (microphone is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

#    file = microphone if microphone is not None else file_upload
    file = microphone

    text = speech_ppl(file)["text"]
    print("Text: ", text)
    translate = translator_ppl(text)
    print("Translate: ", translate)
    translate = translate[0]["translation_text"]
    print("Translate 2: ", translate)
    print("Building image .....")
    #image = image_ppl(translate).images[0]
    #image = image_ppl(translate, num_inference_steps=15)["sample"]
    prompt = "a photograph of an astronaut riding a horse"
    image = image_ppl(prompt, num_inference_steps=15)
    print("Image output: ", image)
    print("Image: ", image.images)
    #image.save("text-to-image.png")

    return warn_output + text, translate, image


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url):
    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = pipe("audio.mp3")["text"]

    summary = summarizer(text)
    summary = summary[0]["summary_text"]
      
    translate = translator(summary)
    translate = translate[0]["translation_text"]

    return html_embed_str, text, summary, translate

#demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        #gr.inputs.Audio(source="upload", type="filepath", optional=True),
    ],
    outputs=[gr.Textbox(label="Transcribed text"),
             gr.Textbox(label="Summarized text"),
             gr.Image(type="pil", label="Output image")],
    layout="horizontal",
    theme="huggingface",
    title="Whisper Demo: Transcribe Audio to Image",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)
'''
yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
    outputs=["html", "text", "text", "text"],
    layout="horizontal",
    theme="huggingface",
    title="Whisper Demo: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)
'''
'''
with demo:
    #gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
    gr.TabbedInterface(mf_transcribe, "Transcribe Audio to Image")

demo.launch(enable_queue=True)
'''
mf_transcribe.launch(enable_queue=True)