File size: 5,294 Bytes
8d3fbf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import cv2
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import torch
import os
from datetime import datetime
import torch
import gradio as gr
from diffusers import (
    StableDiffusionPipeline,
    DDIMScheduler,
    AutoencoderKL,
    StableDiffusionControlNetPipeline,
    ControlNetModel,
)
from PIL import Image
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
from diffusers.utils import load_image
import numpy as np

# date_time = now.strftime("%Y-%m-%d_%H-%M-%S")


def generate_image(
    prompt,
    negative_prompt,
    depth_map_dir,
    face_reference_image,
    s_scale,
    num_inference_steps,
    v2,
):
    # Get the current date and time
    now = datetime.now()
    date_time = now.strftime("%Y-%m-%d_%H-%M-%S")

    # Create the output directory if it doesn't exist
    output_dir = "/content/output"
    os.makedirs(output_dir, exist_ok=True)
    # depth_map_dir = "" # or whichever you have the depthmap images in

    app = FaceAnalysis(
        name="buffalo_l", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
    )
    app.prepare(ctx_id=0, det_size=(640, 640))
    face_reference_image = face_reference_image  # the face reference image
    face_reference_image_np = np.array(face_reference_image)
    faces = app.get(face_reference_image_np)
    faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
    face_image = face_align.norm_crop(
        face_reference_image_np, landmark=faces[0].kps, image_size=224
    )  # you can also segment the face

    base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
    vae_model_path = "stabilityai/sd-vae-ft-mse"
    image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
    ip_ckpt = (
        "/content/ip-adapter-faceid-plus_sd15.bin"
        if not v2
        else "ip-adapter-faceid-plusv2_sd15.bin"
    )
    device = "cuda"

    # Control net test
    controlnet_model_path = "lllyasviel/control_v11f1p_sd15_depth"
    controlnet = ControlNetModel.from_pretrained(
        controlnet_model_path, torch_dtype=torch.float16
    )

    noise_scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        clip_sample=False,
        set_alpha_to_one=False,
        steps_offset=1,
    )

    vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)

    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        controlnet=controlnet,
        scheduler=noise_scheduler,
        vae=vae,
        feature_extractor=None,
        safety_checker=None,
    )

    # load ip-adapter
    ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)

    depth_map_files = [
        f for f in os.listdir(depth_map_dir) if f.endswith((".jpg", ".png"))
    ]
    images = []

    for idx, filename in enumerate(depth_map_files):
        depth_map_path = os.path.join(depth_map_dir, filename)
        depth_map = load_image(depth_map_path)

        image = ip_model.generate(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=depth_map,
            face_image=face_image,
            faceid_embeds=faceid_embeds,
            shortcut=v2,
            s_scale=s_scale,
            num_samples=1,  # Generate one image per depth map
            width=512,
            height=512,
            num_inference_steps=num_inference_steps,
            seed=2023,
        )[0]

        # Save the image with the prompt name, date/time, and depth map index
        image_name = f"{prompt.replace(' ', '_')}_{date_time}_{idx}_0.png"
        image_path = os.path.join(output_dir, image_name)
        image.save(image_path)
        images.append(image)

    torch.cuda.empty_cache()
    return images


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt")
            depth_map_dir = gr.Textbox(label="Depth Map Directory")
            face_reference_image = gr.Image(label="Face Reference Image", type="pil")
            # s_scale = gr.Slider(label="Face Structure strength", value=0.6, step=0.1, minimum=0, maximum=3)
            # num_inference_steps = gr.Slider(label="steps", value=10, step=1, minimum=1, maximum=50)
            v2 = gr.Checkbox(label="Use v2 Adapter", value=False)

        with gr.Column():
            s_scale = gr.Slider(
                label="Face Structure strength",
                value=0.6,
                step=0.1,
                minimum=0,
                maximum=3,
            )
            num_inference_steps = gr.Slider(
                label="steps", value=10, step=1, minimum=1, maximum=50
            )
            gallery = gr.Gallery(label="Generated Images")

    generate_btn = gr.Button("Generate Images")
    generate_btn.click(
        fn=generate_image,
        inputs=[
            prompt,
            negative_prompt,
            depth_map_dir,
            face_reference_image,
            s_scale,
            num_inference_steps,
            v2,
        ],
        outputs=gallery,
    )

demo.launch(share=True, debug=True)