Spaces:
Runtime error
Runtime error
waveydaveygravy
commited on
Commit
•
8d3fbf3
1
Parent(s):
072e62d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from insightface.app import FaceAnalysis
|
3 |
+
from insightface.utils import face_align
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
from datetime import datetime
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
from diffusers import (
|
10 |
+
StableDiffusionPipeline,
|
11 |
+
DDIMScheduler,
|
12 |
+
AutoencoderKL,
|
13 |
+
StableDiffusionControlNetPipeline,
|
14 |
+
ControlNetModel,
|
15 |
+
)
|
16 |
+
from PIL import Image
|
17 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
|
18 |
+
from diffusers.utils import load_image
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
# date_time = now.strftime("%Y-%m-%d_%H-%M-%S")
|
22 |
+
|
23 |
+
|
24 |
+
def generate_image(
|
25 |
+
prompt,
|
26 |
+
negative_prompt,
|
27 |
+
depth_map_dir,
|
28 |
+
face_reference_image,
|
29 |
+
s_scale,
|
30 |
+
num_inference_steps,
|
31 |
+
v2,
|
32 |
+
):
|
33 |
+
# Get the current date and time
|
34 |
+
now = datetime.now()
|
35 |
+
date_time = now.strftime("%Y-%m-%d_%H-%M-%S")
|
36 |
+
|
37 |
+
# Create the output directory if it doesn't exist
|
38 |
+
output_dir = "/content/output"
|
39 |
+
os.makedirs(output_dir, exist_ok=True)
|
40 |
+
# depth_map_dir = "" # or whichever you have the depthmap images in
|
41 |
+
|
42 |
+
app = FaceAnalysis(
|
43 |
+
name="buffalo_l", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
|
44 |
+
)
|
45 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
46 |
+
face_reference_image = face_reference_image # the face reference image
|
47 |
+
face_reference_image_np = np.array(face_reference_image)
|
48 |
+
faces = app.get(face_reference_image_np)
|
49 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
50 |
+
face_image = face_align.norm_crop(
|
51 |
+
face_reference_image_np, landmark=faces[0].kps, image_size=224
|
52 |
+
) # you can also segment the face
|
53 |
+
|
54 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
55 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
56 |
+
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
57 |
+
ip_ckpt = (
|
58 |
+
"/content/ip-adapter-faceid-plus_sd15.bin"
|
59 |
+
if not v2
|
60 |
+
else "ip-adapter-faceid-plusv2_sd15.bin"
|
61 |
+
)
|
62 |
+
device = "cuda"
|
63 |
+
|
64 |
+
# Control net test
|
65 |
+
controlnet_model_path = "lllyasviel/control_v11f1p_sd15_depth"
|
66 |
+
controlnet = ControlNetModel.from_pretrained(
|
67 |
+
controlnet_model_path, torch_dtype=torch.float16
|
68 |
+
)
|
69 |
+
|
70 |
+
noise_scheduler = DDIMScheduler(
|
71 |
+
num_train_timesteps=1000,
|
72 |
+
beta_start=0.00085,
|
73 |
+
beta_end=0.012,
|
74 |
+
beta_schedule="scaled_linear",
|
75 |
+
clip_sample=False,
|
76 |
+
set_alpha_to_one=False,
|
77 |
+
steps_offset=1,
|
78 |
+
)
|
79 |
+
|
80 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
81 |
+
|
82 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
83 |
+
base_model_path,
|
84 |
+
torch_dtype=torch.float16,
|
85 |
+
controlnet=controlnet,
|
86 |
+
scheduler=noise_scheduler,
|
87 |
+
vae=vae,
|
88 |
+
feature_extractor=None,
|
89 |
+
safety_checker=None,
|
90 |
+
)
|
91 |
+
|
92 |
+
# load ip-adapter
|
93 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
|
94 |
+
|
95 |
+
depth_map_files = [
|
96 |
+
f for f in os.listdir(depth_map_dir) if f.endswith((".jpg", ".png"))
|
97 |
+
]
|
98 |
+
images = []
|
99 |
+
|
100 |
+
for idx, filename in enumerate(depth_map_files):
|
101 |
+
depth_map_path = os.path.join(depth_map_dir, filename)
|
102 |
+
depth_map = load_image(depth_map_path)
|
103 |
+
|
104 |
+
image = ip_model.generate(
|
105 |
+
prompt=prompt,
|
106 |
+
negative_prompt=negative_prompt,
|
107 |
+
image=depth_map,
|
108 |
+
face_image=face_image,
|
109 |
+
faceid_embeds=faceid_embeds,
|
110 |
+
shortcut=v2,
|
111 |
+
s_scale=s_scale,
|
112 |
+
num_samples=1, # Generate one image per depth map
|
113 |
+
width=512,
|
114 |
+
height=512,
|
115 |
+
num_inference_steps=num_inference_steps,
|
116 |
+
seed=2023,
|
117 |
+
)[0]
|
118 |
+
|
119 |
+
# Save the image with the prompt name, date/time, and depth map index
|
120 |
+
image_name = f"{prompt.replace(' ', '_')}_{date_time}_{idx}_0.png"
|
121 |
+
image_path = os.path.join(output_dir, image_name)
|
122 |
+
image.save(image_path)
|
123 |
+
images.append(image)
|
124 |
+
|
125 |
+
torch.cuda.empty_cache()
|
126 |
+
return images
|
127 |
+
|
128 |
+
|
129 |
+
with gr.Blocks() as demo:
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
prompt = gr.Textbox(label="Prompt")
|
133 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
134 |
+
depth_map_dir = gr.Textbox(label="Depth Map Directory")
|
135 |
+
face_reference_image = gr.Image(label="Face Reference Image", type="pil")
|
136 |
+
# s_scale = gr.Slider(label="Face Structure strength", value=0.6, step=0.1, minimum=0, maximum=3)
|
137 |
+
# num_inference_steps = gr.Slider(label="steps", value=10, step=1, minimum=1, maximum=50)
|
138 |
+
v2 = gr.Checkbox(label="Use v2 Adapter", value=False)
|
139 |
+
|
140 |
+
with gr.Column():
|
141 |
+
s_scale = gr.Slider(
|
142 |
+
label="Face Structure strength",
|
143 |
+
value=0.6,
|
144 |
+
step=0.1,
|
145 |
+
minimum=0,
|
146 |
+
maximum=3,
|
147 |
+
)
|
148 |
+
num_inference_steps = gr.Slider(
|
149 |
+
label="steps", value=10, step=1, minimum=1, maximum=50
|
150 |
+
)
|
151 |
+
gallery = gr.Gallery(label="Generated Images")
|
152 |
+
|
153 |
+
generate_btn = gr.Button("Generate Images")
|
154 |
+
generate_btn.click(
|
155 |
+
fn=generate_image,
|
156 |
+
inputs=[
|
157 |
+
prompt,
|
158 |
+
negative_prompt,
|
159 |
+
depth_map_dir,
|
160 |
+
face_reference_image,
|
161 |
+
s_scale,
|
162 |
+
num_inference_steps,
|
163 |
+
v2,
|
164 |
+
],
|
165 |
+
outputs=gallery,
|
166 |
+
)
|
167 |
+
|
168 |
+
demo.launch(share=True, debug=True)
|