File size: 7,187 Bytes
14cb0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75f9996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import numpy as np
import io
import matplotlib.pyplot as plt
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from datetime import datetime
from PIL import Image
import os
from datetime import datetime
from openai import OpenAI
from ai71 import AI71

if torch.cuda.is_available():
    model = model.to('cuda')

# dials_embeddings = pd.read_pickle('dials_embeddings.pkl')
# dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/dials_embeddings.pkl')
dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/kaggle_therapy_embeddings.pkl')
with open ('emotion_group_labels.txt') as file:
    emotion_group_labels = file.read().splitlines()

embed_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
classifier = pipeline("zero-shot-classification", model ='facebook/bart-large-mnli')

AI71_BASE_URL = "https://api.ai71.ai/v1/"
AI71_API_KEY = os.getenv('AI71_API_KEY')

# Detect emotions from patient dialogues
def detect_emotions(text):
  emotion = classifier(text, candidate_labels=emotion_group_labels, batch_size=16)
  top_5_scores = [i/sum(emotion['scores'][:5]) for i in emotion['scores'][:5]]
  top_5_emotions = emotion['labels'][:5]
  emotion_set = {l: "{:.2%}".format(s) for l, s in zip(top_5_emotions, top_5_scores)}
  return emotion_set

# Measure cosine similarity between a pair of vectors
def cosine_distance(vec1,vec2):
  cosine = (np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))
  return cosine

# Generate an image of trigger emotions
def generate_triggers_img(items):
    labels = list(items.keys())
    values = [float(v.strip('%')) for v in items.values()]  # Convert to float for plotting

    new_items = {k:v for k, v in zip(labels, values)}
    new_items = dict(sorted(new_items.items(), key=lambda item: item[1]))
    labels = list(new_items.keys())
    values = list(new_items.values())

    fig, ax = plt.subplots(figsize=(10, 6))
    colors = plt.cm.viridis(np.linspace(0, 1, len(labels)))

    bars = ax.barh(labels, values, color=colors)

    for spine in ax.spines.values():
        spine.set_visible(False)

    ax.tick_params(axis='y', labelsize=18)
    ax.xaxis.set_visible(False)
    ax.yaxis.set_ticks_position('none')

    for bar in bars:
        width = bar.get_width()
        ax.text(width, bar.get_y() + bar.get_height()/2, f'{width:.2f}%',
                ha='left', va='center', fontweight='bold', fontsize=18)

    plt.tight_layout()
    plt.savefig('triggeres.png')
    triggers_img = Image.open('triggeres.png')
    return triggers_img

# Generate therapist responses and patient triggers
def get_doc_response_emotions(user_message, therapy_session_conversation):
    global session_conversation

    user_messages = []
    user_messages.append(user_message)
    emotion_set = detect_emotions(user_message)
    print(emotion_set)

    emotions_msg = generate_triggers_img(emotion_set)
    user_embedding = embed_model.encode(user_message, device='cuda' if torch.cuda.is_available() else 'cpu')

    similarities =[]
    for v in dials_embeddings['embeddings']:
      similarities.append(cosine_distance(user_embedding,v))

    top_match_index = similarities.index(max(similarities))
    # doc_response = dials_embeddings.iloc[top_match_index+1]['Doctor']
    doc_response = dials_embeddings.iloc[top_match_index]['Doctor']

    therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response])

    session_conversation.extend(["User: "+user_message, "Therapist: "+doc_response])

    print(f"User's message: {user_message}")
    print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}")
    # print(f"Therapist's response: {dials_embeddings.iloc[top_match_index+1]['Doctor']}\n\n")
    print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n")

    return '', therapy_session_conversation, emotions_msg

# Generate summarization and recommendations for teh session
def summarize_and_recommend():
  global session_conversation
  session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
  session_conversation_processed = session_conversation.copy()
  session_conversation_processed.insert(0, "Session_time: "+session_time)
  session_conversation_processed ='\n'.join(session_conversation_processed)
  print("Session conversation:", session_conversation_processed)

  AI71_BASE_URL = "https://api.ai71.ai/v1/"

  client = OpenAI(
      api_key=AI71_API_KEY,
      base_url=AI71_BASE_URL,
  )

  full_summary = ""
  for chunk in AI71(AI71_API_KEY).chat.completions.create(
      model="tiiuae/falcon-180b-chat",
      messages=[
          {"role": "system", "content": """You are an Expert Cognitive Behavioural Therapist and Precis writer.
          Summarize the below user content <<<session_conversation_processed>>> into useful, ethical, relevant and realistic phrases with a format
        Session Time:
        Summary of the patient messages: #in two to four sentences
        Summary of therapist messages: #in two to three sentences:
        Summary of the whole session: # in two to three sentences. Ensure the entire session summary strictly does not exceed 100 tokens."""},
          {"role": "user", "content": session_conversation_processed},
      ],
      stream=True,
  ):
      if chunk.choices[0].delta.content:
          summary = chunk.choices[0].delta.content
          # print("Chunk summary:", summary, sep="", end="", flush=True)
          full_summary += summary
  full_summary = full_summary.replace('User:', '').strip()
  print("\n")
  print("Full summary:", full_summary)

  full_recommendations = ""
  for chunk in AI71(AI71_API_KEY).chat.completions.create(
      model="tiiuae/falcon-180b-chat",
      messages=[
          {"role": "system", "content": """You are an expert Cognitive Behavioural Therapist.
          Based on the full summary <<<full_summary>>> provide clinically valid, useful, appropriate action plan for the Patient as a bullted list.
          The list shall contain both medical and non medical prescriptions, dos and donts. The format of response shall be in passive voice with proper tense.
        - The patient is referred to........ #in one sentence
        - The patient is advised to ........ #in one sentence
        - The patient is refrained from........ #in one sentence
        - It is suggested  that tha patient ........ #in one sentence
        - Scheduled a follow-up session with the patient........#in one sentence
          *Ensure the list contains NOT MORE THAN 7 points"""},
          {"role": "user", "content": full_summary},
      ],
      stream=True,
  ):
      if chunk.choices[0].delta.content:
          rec = chunk.choices[0].delta.content
          # print("Chunk recommendation:", rec, sep="", end="", flush=True)
          full_recommendations += rec
  full_recommendations = full_recommendations.replace('User:', '').strip()
  print("\n")
  print("Full recommendations:", full_recommendations)
  session_conversation=[]
  return full_summary, full_recommendations