Create funcs.py
Browse files
funcs.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import io
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import pipeline
|
8 |
+
from datetime import datetime
|
9 |
+
from PIL import Image
|
10 |
+
import os
|
11 |
+
from datetime import datetime
|
12 |
+
from openai import OpenAI
|
13 |
+
from ai71 import AI71
|
14 |
+
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
model = model.to('cuda')
|
17 |
+
|
18 |
+
# dials_embeddings = pd.read_pickle('dials_embeddings.pkl')
|
19 |
+
# dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/dials_embeddings.pkl')
|
20 |
+
dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/kaggle_therapy_embeddings.pkl')
|
21 |
+
with open ('emotion_group_labels.txt') as file:
|
22 |
+
emotion_group_labels = file.read().splitlines()
|
23 |
+
|
24 |
+
embed_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
25 |
+
classifier = pipeline("zero-shot-classification", model ='facebook/bart-large-mnli')
|
26 |
+
|
27 |
+
AI71_BASE_URL = "https://api.ai71.ai/v1/"
|
28 |
+
AI71_API_KEY = os.getenv('AI71_API_KEY')
|
29 |
+
|
30 |
+
# Detect emotions from patient dialogues
|
31 |
+
def detect_emotions(text):
|
32 |
+
emotion = classifier(text, candidate_labels=emotion_group_labels, batch_size=16)
|
33 |
+
top_5_scores = [i/sum(emotion['scores'][:5]) for i in emotion['scores'][:5]]
|
34 |
+
top_5_emotions = emotion['labels'][:5]
|
35 |
+
emotion_set = {l: "{:.2%}".format(s) for l, s in zip(top_5_emotions, top_5_scores)}
|
36 |
+
return emotion_set
|
37 |
+
|
38 |
+
# Measure cosine similarity between a pair of vectors
|
39 |
+
def cosine_distance(vec1,vec2):
|
40 |
+
cosine = (np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))
|
41 |
+
return cosine
|
42 |
+
|
43 |
+
# Generate an image of trigger emotions
|
44 |
+
def generate_triggers_img(items):
|
45 |
+
labels = list(items.keys())
|
46 |
+
values = [float(v.strip('%')) for v in items.values()] # Convert to float for plotting
|
47 |
+
|
48 |
+
new_items = {k:v for k, v in zip(labels, values)}
|
49 |
+
new_items = dict(sorted(new_items.items(), key=lambda item: item[1]))
|
50 |
+
labels = list(new_items.keys())
|
51 |
+
values = list(new_items.values())
|
52 |
+
|
53 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
54 |
+
colors = plt.cm.viridis(np.linspace(0, 1, len(labels)))
|
55 |
+
|
56 |
+
bars = ax.barh(labels, values, color=colors)
|
57 |
+
|
58 |
+
for spine in ax.spines.values():
|
59 |
+
spine.set_visible(False)
|
60 |
+
|
61 |
+
ax.tick_params(axis='y', labelsize=18)
|
62 |
+
ax.xaxis.set_visible(False)
|
63 |
+
ax.yaxis.set_ticks_position('none')
|
64 |
+
|
65 |
+
for bar in bars:
|
66 |
+
width = bar.get_width()
|
67 |
+
ax.text(width, bar.get_y() + bar.get_height()/2, f'{width:.2f}%',
|
68 |
+
ha='left', va='center', fontweight='bold', fontsize=18)
|
69 |
+
|
70 |
+
plt.tight_layout()
|
71 |
+
plt.savefig('triggeres.png')
|
72 |
+
triggers_img = Image.open('triggeres.png')
|
73 |
+
return triggers_img
|
74 |
+
|
75 |
+
class session_processor:
|
76 |
+
def __init__(self):
|
77 |
+
self.session_conversation = []
|
78 |
+
|
79 |
+
# Generate therapist responses and patient triggers
|
80 |
+
def get_doc_response_emotions(user_message, therapy_session_conversation):
|
81 |
+
|
82 |
+
user_messages = []
|
83 |
+
user_messages.append(user_message)
|
84 |
+
emotion_set = detect_emotions(user_message)
|
85 |
+
print(emotion_set)
|
86 |
+
|
87 |
+
emotions_msg = generate_triggers_img(emotion_set)
|
88 |
+
user_embedding = embed_model.encode(user_message, device='cuda' if torch.cuda.is_available() else 'cpu')
|
89 |
+
|
90 |
+
similarities =[]
|
91 |
+
for v in dials_embeddings['embeddings']:
|
92 |
+
similarities.append(cosine_distance(user_embedding,v))
|
93 |
+
|
94 |
+
top_match_index = similarities.index(max(similarities))
|
95 |
+
# doc_response = dials_embeddings.iloc[top_match_index+1]['Doctor']
|
96 |
+
doc_response = dials_embeddings.iloc[top_match_index]['Doctor']
|
97 |
+
|
98 |
+
therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response])
|
99 |
+
|
100 |
+
self.session_conversation.extend(["User: "+user_message, "Therapist: "+doc_response])
|
101 |
+
|
102 |
+
print(f"User's message: {user_message}")
|
103 |
+
print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}")
|
104 |
+
# print(f"Therapist's response: {dials_embeddings.iloc[top_match_index+1]['Doctor']}\n\n")
|
105 |
+
print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n")
|
106 |
+
|
107 |
+
return '', therapy_session_conversation, emotions_msg
|
108 |
+
|
109 |
+
# Generate summarization and recommendations for teh session
|
110 |
+
def summarize_and_recommend():
|
111 |
+
session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
112 |
+
session_conversation_processed = self.session_conversation.copy()
|
113 |
+
session_conversation_processed.insert(0, "Session_time: "+session_time)
|
114 |
+
session_conversation_processed ='\n'.join(session_conversation_processed)
|
115 |
+
print("Session conversation:", session_conversation_processed)
|
116 |
+
|
117 |
+
AI71_BASE_URL = "https://api.ai71.ai/v1/"
|
118 |
+
|
119 |
+
client = OpenAI(
|
120 |
+
api_key=AI71_API_KEY,
|
121 |
+
base_url=AI71_BASE_URL,
|
122 |
+
)
|
123 |
+
|
124 |
+
full_summary = ""
|
125 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
126 |
+
model="tiiuae/falcon-180b-chat",
|
127 |
+
messages=[
|
128 |
+
{"role": "system", "content": """You are an Expert Cognitive Behavioural Therapist and Precis writer.
|
129 |
+
Summarize the below user content <<<session_conversation_processed>>> into useful, ethical, relevant and realistic phrases with a format
|
130 |
+
Session Time:
|
131 |
+
Summary of the patient messages: #in two to four sentences
|
132 |
+
Summary of therapist messages: #in two to three sentences:
|
133 |
+
Summary of the whole session: # in two to three sentences. Ensure the entire session summary strictly does not exceed 100 tokens."""},
|
134 |
+
{"role": "user", "content": session_conversation_processed},
|
135 |
+
],
|
136 |
+
stream=True,
|
137 |
+
):
|
138 |
+
if chunk.choices[0].delta.content:
|
139 |
+
summary = chunk.choices[0].delta.content
|
140 |
+
# print("Chunk summary:", summary, sep="", end="", flush=True)
|
141 |
+
full_summary += summary
|
142 |
+
full_summary = full_summary.replace('User:', '').strip()
|
143 |
+
print("\n")
|
144 |
+
print("Full summary:", full_summary)
|
145 |
+
|
146 |
+
full_recommendations = ""
|
147 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
148 |
+
model="tiiuae/falcon-180b-chat",
|
149 |
+
messages=[
|
150 |
+
{"role": "system", "content": """You are an expert Cognitive Behavioural Therapist.
|
151 |
+
Based on the full summary <<<full_summary>>> provide clinically valid, useful, appropriate action plan for the Patient as a bullted list.
|
152 |
+
The list shall contain both medical and non medical prescriptions, dos and donts. The format of response shall be in passive voice with proper tense.
|
153 |
+
- The patient is referred to........ #in one sentence
|
154 |
+
- The patient is advised to ........ #in one sentence
|
155 |
+
- The patient is refrained from........ #in one sentence
|
156 |
+
- It is suggested that tha patient ........ #in one sentence
|
157 |
+
- Scheduled a follow-up session with the patient........#in one sentence
|
158 |
+
*Ensure the list contains NOT MORE THAN 7 points"""},
|
159 |
+
{"role": "user", "content": full_summary},
|
160 |
+
],
|
161 |
+
stream=True,
|
162 |
+
):
|
163 |
+
if chunk.choices[0].delta.content:
|
164 |
+
rec = chunk.choices[0].delta.content
|
165 |
+
# print("Chunk recommendation:", rec, sep="", end="", flush=True)
|
166 |
+
full_recommendations += rec
|
167 |
+
full_recommendations = full_recommendations.replace('User:', '').strip()
|
168 |
+
print("\n")
|
169 |
+
print("Full recommendations:", full_recommendations)
|
170 |
+
self.session_conversation=[]
|
171 |
+
return full_summary, full_recommendations
|