|
import gradio as gr |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
from datetime import datetime, timedelta |
|
import requests |
|
|
|
|
|
js_func = """ |
|
function refresh() { |
|
const url = new URL(window.location); |
|
|
|
if (url.searchParams.get('__theme') !== 'dark') { |
|
url.searchParams.set('__theme', 'dark'); |
|
window.location.href = url.href; |
|
} |
|
} |
|
""" |
|
|
|
def get_nav_data(scheme_code): |
|
url = f"https://api.mfapi.in/mf/{scheme_code}" |
|
response = requests.get(url) |
|
data = response.json() |
|
df = pd.DataFrame(data['data']) |
|
df['date'] = pd.to_datetime(df['date'], format='%d-%m-%Y') |
|
df['nav'] = df['nav'].astype(float) |
|
df = df.sort_values('date') |
|
return df |
|
|
|
def calculate_sip_returns(nav_data, sip_amount, start_date, end_date,SIP_Date): |
|
start_date = pd.Timestamp(start_date) |
|
end_date = pd.Timestamp(end_date) |
|
|
|
nav_data_filtered = nav_data[(nav_data['date'] >= start_date) & (nav_data['date'] <= end_date)].copy() |
|
nav_data_filtered['date'] = pd.to_datetime(nav_data_filtered['date']) |
|
if SIP_Date == 'start': |
|
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).head(1) |
|
elif SIP_Date == 'end': |
|
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).tail(1) |
|
else: |
|
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).apply(lambda x: x.iloc[len(x)//2]) |
|
|
|
units_accumulated = 0 |
|
total_investment = 0 |
|
|
|
for _, row in last_dates.iloc[:-1].iterrows(): |
|
units_bought = sip_amount / row['nav'] |
|
units_accumulated += units_bought |
|
total_investment += sip_amount |
|
|
|
final_value = units_accumulated * last_dates.iloc[-1]['nav'] |
|
total_return = (final_value - total_investment) / total_investment * 100 |
|
|
|
return total_return, final_value, total_investment |
|
|
|
def create_pie_chart(schemes): |
|
labels = list(schemes.keys()) |
|
values = list(schemes.values()) |
|
|
|
fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) |
|
fig.update_layout(title_text="Scheme Weightages") |
|
return fig |
|
|
|
def calculate_portfolio_returns(schemes, sip_amount, start_date, end_date, SIP_date,schemes_df): |
|
scheme_returns = [] |
|
total_investment = 0 |
|
final_value = 0 |
|
|
|
for scheme_name, scheme_weight in schemes.items(): |
|
scheme_code = schemes_df[schemes_df['schemeName'] == scheme_name]['schemeCode'].values[0] |
|
nav_data = get_nav_data(scheme_code) |
|
scheme_return, scheme_final_value, scheme_total_investment = calculate_sip_returns(nav_data, sip_amount * scheme_weight / 100, start_date, end_date,SIP_date) |
|
scheme_returns.append((scheme_name, scheme_return)) |
|
final_value += scheme_final_value |
|
total_investment += scheme_total_investment |
|
|
|
portfolio_return = (final_value - total_investment) / total_investment * 100 |
|
return portfolio_return, final_value, total_investment, scheme_returns |
|
|
|
def update_sip_calculator(*args): |
|
period = args[0] |
|
custom_start_date = args[1] |
|
custom_end_date = args[2] |
|
SIP_Date = args[3] |
|
sip_amount = args[4] |
|
schemes_df = args[5] |
|
schemes = {} |
|
|
|
for i in range(6, len(args), 2): |
|
if args[i] and args[i+1]: |
|
schemes[args[i]] = float(args[i+1]) |
|
|
|
if not schemes: |
|
return "Please add at least one scheme.", None, None, None |
|
|
|
total_weight = sum(schemes.values()) |
|
|
|
end_date = datetime.now().date() |
|
if period == "Custom": |
|
if not custom_start_date or not custom_end_date: |
|
return "Please provide both start and end dates for custom period.", None, None, None |
|
start_date = datetime.strptime(custom_start_date, "%Y-%m-%d").date() |
|
end_date = datetime.strptime(custom_end_date, "%Y-%m-%d").date() |
|
else: |
|
years = int(period.split()[0]) |
|
start_date = end_date - timedelta(days=years*365) |
|
|
|
try: |
|
portfolio_return, final_value, total_investment, scheme_returns = calculate_portfolio_returns(schemes, sip_amount, start_date, end_date, SIP_Date,schemes_df) |
|
except Exception as e: |
|
return f"Error: {str(e)}", None, None, None |
|
|
|
result = f"Total portfolio SIP return: {portfolio_return:.2f}%\n" |
|
result += f"Total investment: ₹{total_investment:.2f}\n" |
|
result += f"Final value: ₹{final_value:.2f}\n\n" |
|
result += "Individual scheme returns:\n" |
|
for scheme_name, scheme_return in scheme_returns: |
|
result += f"{scheme_name}: {scheme_return:.2f}%\n" |
|
|
|
pie_chart = create_pie_chart(schemes) |
|
|
|
return result, pie_chart, final_value, total_investment |
|
|
|
def fetch_scheme_data(): |
|
url = "https://api.mfapi.in/mf" |
|
response = requests.get(url) |
|
schemes = response.json() |
|
return pd.DataFrame(schemes) |
|
|
|
def quick_search_schemes(query, schemes_df): |
|
if not query: |
|
return [] |
|
matching_schemes = schemes_df[schemes_df['schemeName'].str.contains(query, case=False, na=False)] |
|
return matching_schemes['schemeName'].tolist()[:40] |
|
|
|
def update_scheme_dropdown(query, schemes_df, key_up_data: gr.KeyUpData): |
|
schemes = quick_search_schemes(key_up_data.input_value, schemes_df) |
|
return gr.update(choices=schemes, visible=True) |
|
|
|
def update_schemes_list(schemes_list, updated_data): |
|
new_schemes_list = [] |
|
for _, row in updated_data.iterrows(): |
|
scheme_name = row.get('Scheme Name') |
|
weight = row.get('Weight (%)') |
|
action = row.get('Actions') |
|
if scheme_name and weight is not None and action != '🗑️': |
|
try: |
|
weight_float = float(weight) |
|
new_schemes_list.append((scheme_name, weight_float)) |
|
except ValueError: |
|
|
|
continue |
|
return new_schemes_list |
|
|
|
def update_schemes_table(schemes_list): |
|
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"]) |
|
df["Actions"] = "❌" |
|
return df |
|
|
|
def add_scheme_to_list(schemes_list, scheme_name, weight): |
|
if scheme_name and weight: |
|
new_list = schemes_list + [(scheme_name, float(weight))] |
|
return new_list, update_schemes_table(new_list), None, 0 |
|
return schemes_list, update_schemes_table(schemes_list), scheme_name, weight |
|
|
|
def update_schemes(schemes_list, updated_data): |
|
try: |
|
new_schemes_list = update_schemes_list(schemes_list, updated_data) |
|
if not new_schemes_list: |
|
return schemes_list, update_schemes_table(schemes_list), "No valid schemes found in the table." |
|
return new_schemes_list, update_schemes_table(new_schemes_list), None |
|
except Exception as e: |
|
error_msg = f"Error updating schemes: {str(e)}" |
|
return schemes_list, update_schemes_table(schemes_list), error_msg |
|
|
|
def prepare_inputs(period, custom_start, custom_end,SIP_Date,sip_amount, schemes_list, schemes_df,): |
|
inputs = [period, custom_start, custom_end,SIP_Date, sip_amount, schemes_df] |
|
for name, weight in schemes_list: |
|
inputs.extend([name, weight]) |
|
return inputs |
|
|
|
def handle_row_selection(schemes_list, evt: gr.SelectData, table_data): |
|
|
|
|
|
|
|
|
|
if evt.index is not None and len(evt.index) > 1: |
|
column_index = evt.index[1] |
|
if column_index == 2: |
|
row_index = evt.index[0] |
|
|
|
table_data = table_data.drop(row_index).reset_index(drop=True) |
|
|
|
updated_schemes_list = [(row['Scheme Name'], row['Weight (%)']) for _, row in table_data.iterrows()] |
|
return table_data, updated_schemes_list |
|
return table_data, schemes_list |
|
|
|
def update_schemes_table(schemes_list): |
|
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"]) |
|
df["Actions"] = "❌" |
|
return df |
|
|
|
def create_ui(): |
|
schemes_df = fetch_scheme_data() |
|
|
|
with gr.Blocks(js=js_func) as app: |
|
gr.Markdown("# Mutual Fund SIP Returns Calculator") |
|
|
|
with gr.Row(): |
|
period = gr.Dropdown(choices=["1 year", "3 years", "5 years", "7 years", "10 years", "Custom"], label="Select Period") |
|
custom_start_date = gr.Textbox(label="Custom Start Date (YYYY-MM-DD)", visible=False) |
|
custom_end_date = gr.Textbox(label="Custom End Date (YYYY-MM-DD)", visible=False) |
|
SIP_Date = gr.Dropdown(label="SIP Date", choices=["start","middle","end"]) |
|
|
|
sip_amount = gr.Number(label="SIP Amount (₹)") |
|
|
|
schemes_list = gr.State([]) |
|
|
|
with gr.Row(): |
|
scheme_dropdown = gr.Dropdown(label="Select Scheme", choices=[], allow_custom_value=True, interactive=True) |
|
scheme_weight = gr.Slider(minimum=0, maximum=100, step=1, label="Scheme Weight (%)") |
|
add_button = gr.Button("Add Scheme") |
|
|
|
schemes_table = gr.Dataframe( |
|
headers=["Scheme Name", "Weight (%)", "Actions"], |
|
datatype=["str", "number", "str"], |
|
col_count=(3, "fixed"), |
|
label="Added Schemes", |
|
type="pandas", |
|
interactive=True |
|
) |
|
|
|
update_button = gr.Button("Update Schemes") |
|
error_message = gr.Textbox(label="Error", visible=False) |
|
|
|
calculate_button = gr.Button("Calculate Returns") |
|
|
|
result = gr.Textbox(label="Results") |
|
pie_chart = gr.Plot(label="Scheme Weightages") |
|
final_value = gr.Number(label="Final Value (₹)", interactive=False) |
|
total_investment = gr.Number(label="Total Investment (₹)", interactive=False) |
|
|
|
def update_custom_date_visibility(period): |
|
return {custom_start_date: gr.update(visible=period=="Custom"), |
|
custom_end_date: gr.update(visible=period=="Custom")} |
|
|
|
period.change(update_custom_date_visibility, inputs=[period], outputs=[custom_start_date, custom_end_date]) |
|
|
|
scheme_dropdown.key_up( |
|
fn=update_scheme_dropdown, |
|
inputs=[scheme_dropdown, gr.State(schemes_df)], |
|
outputs=scheme_dropdown, |
|
queue=False, |
|
show_progress="hidden" |
|
) |
|
|
|
add_button.click(add_scheme_to_list, |
|
inputs=[schemes_list, scheme_dropdown, scheme_weight], |
|
outputs=[schemes_list, schemes_table, scheme_dropdown, scheme_weight]) |
|
|
|
def update_schemes_and_show_error(schemes_list, updated_data): |
|
new_schemes_list, updated_table, error = update_schemes(schemes_list, updated_data) |
|
return ( |
|
new_schemes_list, |
|
updated_table, |
|
gr.update(value=error, visible=bool(error)) |
|
) |
|
|
|
update_button.click( |
|
update_schemes_and_show_error, |
|
inputs=[schemes_list, schemes_table], |
|
outputs=[schemes_list, schemes_table, error_message] |
|
) |
|
|
|
schemes_table.select( |
|
handle_row_selection, |
|
inputs=[schemes_list, schemes_table], |
|
outputs=[schemes_table, schemes_list] |
|
) |
|
calculate_button.click( |
|
lambda *args: update_sip_calculator(*prepare_inputs(*args)), |
|
inputs=[period, custom_start_date, custom_end_date,SIP_Date,sip_amount, schemes_list, gr.State(schemes_df)], |
|
outputs=[result, pie_chart, final_value, total_investment] |
|
) |
|
|
|
return app |
|
|
|
app = create_ui() |
|
app.launch() |