vibhorag101's picture
Force Dark Mode
c5048d8
raw
history blame
11.7 kB
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime, timedelta
import requests
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def get_nav_data(scheme_code):
url = f"https://api.mfapi.in/mf/{scheme_code}"
response = requests.get(url)
data = response.json()
df = pd.DataFrame(data['data'])
df['date'] = pd.to_datetime(df['date'], format='%d-%m-%Y')
df['nav'] = df['nav'].astype(float)
df = df.sort_values('date')
return df
def calculate_sip_returns(nav_data, sip_amount, start_date, end_date,SIP_Date):
start_date = pd.Timestamp(start_date)
end_date = pd.Timestamp(end_date)
nav_data_filtered = nav_data[(nav_data['date'] >= start_date) & (nav_data['date'] <= end_date)].copy()
nav_data_filtered['date'] = pd.to_datetime(nav_data_filtered['date'])
if SIP_Date == 'start':
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).head(1)
elif SIP_Date == 'end':
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).tail(1)
else:
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).apply(lambda x: x.iloc[len(x)//2])
units_accumulated = 0
total_investment = 0
for _, row in last_dates.iloc[:-1].iterrows():
units_bought = sip_amount / row['nav']
units_accumulated += units_bought
total_investment += sip_amount
final_value = units_accumulated * last_dates.iloc[-1]['nav']
total_return = (final_value - total_investment) / total_investment * 100
return total_return, final_value, total_investment
def create_pie_chart(schemes):
labels = list(schemes.keys())
values = list(schemes.values())
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
fig.update_layout(title_text="Scheme Weightages")
return fig
def calculate_portfolio_returns(schemes, sip_amount, start_date, end_date, SIP_date,schemes_df):
scheme_returns = []
total_investment = 0
final_value = 0
for scheme_name, scheme_weight in schemes.items():
scheme_code = schemes_df[schemes_df['schemeName'] == scheme_name]['schemeCode'].values[0]
nav_data = get_nav_data(scheme_code)
scheme_return, scheme_final_value, scheme_total_investment = calculate_sip_returns(nav_data, sip_amount * scheme_weight / 100, start_date, end_date,SIP_date)
scheme_returns.append((scheme_name, scheme_return))
final_value += scheme_final_value
total_investment += scheme_total_investment
portfolio_return = (final_value - total_investment) / total_investment * 100
return portfolio_return, final_value, total_investment, scheme_returns
def update_sip_calculator(*args):
period = args[0]
custom_start_date = args[1]
custom_end_date = args[2]
SIP_Date = args[3]
sip_amount = args[4]
schemes_df = args[5]
schemes = {}
for i in range(6, len(args), 2):
if args[i] and args[i+1]:
schemes[args[i]] = float(args[i+1])
if not schemes:
return "Please add at least one scheme.", None, None, None
total_weight = sum(schemes.values())
end_date = datetime.now().date()
if period == "Custom":
if not custom_start_date or not custom_end_date:
return "Please provide both start and end dates for custom period.", None, None, None
start_date = datetime.strptime(custom_start_date, "%Y-%m-%d").date()
end_date = datetime.strptime(custom_end_date, "%Y-%m-%d").date()
else:
years = int(period.split()[0])
start_date = end_date - timedelta(days=years*365)
try:
portfolio_return, final_value, total_investment, scheme_returns = calculate_portfolio_returns(schemes, sip_amount, start_date, end_date, SIP_Date,schemes_df)
except Exception as e:
return f"Error: {str(e)}", None, None, None
result = f"Total portfolio SIP return: {portfolio_return:.2f}%\n"
result += f"Total investment: ₹{total_investment:.2f}\n"
result += f"Final value: ₹{final_value:.2f}\n\n"
result += "Individual scheme returns:\n"
for scheme_name, scheme_return in scheme_returns:
result += f"{scheme_name}: {scheme_return:.2f}%\n"
pie_chart = create_pie_chart(schemes)
return result, pie_chart, final_value, total_investment
def fetch_scheme_data():
url = "https://api.mfapi.in/mf"
response = requests.get(url)
schemes = response.json()
return pd.DataFrame(schemes)
def quick_search_schemes(query, schemes_df):
if not query:
return []
matching_schemes = schemes_df[schemes_df['schemeName'].str.contains(query, case=False, na=False)]
return matching_schemes['schemeName'].tolist()[:40]
def update_scheme_dropdown(query, schemes_df, key_up_data: gr.KeyUpData):
schemes = quick_search_schemes(key_up_data.input_value, schemes_df)
return gr.update(choices=schemes, visible=True)
def update_schemes_list(schemes_list, updated_data):
new_schemes_list = []
for _, row in updated_data.iterrows():
scheme_name = row.get('Scheme Name')
weight = row.get('Weight (%)')
action = row.get('Actions')
if scheme_name and weight is not None and action != '🗑️': # Only keep rows that aren't marked for deletion
try:
weight_float = float(weight)
new_schemes_list.append((scheme_name, weight_float))
except ValueError:
# If weight is not a valid float, skip this row
continue
return new_schemes_list
def update_schemes_table(schemes_list):
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"])
df["Actions"] = "❌" # Use a different emoji to avoid confusion with the deletion mark
return df
def add_scheme_to_list(schemes_list, scheme_name, weight):
if scheme_name and weight:
new_list = schemes_list + [(scheme_name, float(weight))]
return new_list, update_schemes_table(new_list), None, 0
return schemes_list, update_schemes_table(schemes_list), scheme_name, weight
def update_schemes(schemes_list, updated_data):
try:
new_schemes_list = update_schemes_list(schemes_list, updated_data)
if not new_schemes_list:
return schemes_list, update_schemes_table(schemes_list), "No valid schemes found in the table."
return new_schemes_list, update_schemes_table(new_schemes_list), None
except Exception as e:
error_msg = f"Error updating schemes: {str(e)}"
return schemes_list, update_schemes_table(schemes_list), error_msg
def prepare_inputs(period, custom_start, custom_end,SIP_Date,sip_amount, schemes_list, schemes_df,):
inputs = [period, custom_start, custom_end,SIP_Date, sip_amount, schemes_df]
for name, weight in schemes_list:
inputs.extend([name, weight])
return inputs
def handle_row_selection(schemes_list, evt: gr.SelectData, table_data):
# print(f"Event data: {evt}")
# print(f"Event index: {evt.index}")
# print(f"Table data: {table_data}")
if evt.index is not None and len(evt.index) > 1:
column_index = evt.index[1]
if column_index == 2: # "Actions" column
row_index = evt.index[0]
# Remove the row instead of marking it
table_data = table_data.drop(row_index).reset_index(drop=True)
# Update the schemes_list
updated_schemes_list = [(row['Scheme Name'], row['Weight (%)']) for _, row in table_data.iterrows()]
return table_data, updated_schemes_list
return table_data, schemes_list
def update_schemes_table(schemes_list):
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"])
df["Actions"] = "❌"
return df
def create_ui():
schemes_df = fetch_scheme_data()
with gr.Blocks(js=js_func) as app:
gr.Markdown("# Mutual Fund SIP Returns Calculator")
with gr.Row():
period = gr.Dropdown(choices=["1 year", "3 years", "5 years", "7 years", "10 years", "Custom"], label="Select Period")
custom_start_date = gr.Textbox(label="Custom Start Date (YYYY-MM-DD)", visible=False)
custom_end_date = gr.Textbox(label="Custom End Date (YYYY-MM-DD)", visible=False)
SIP_Date = gr.Dropdown(label="SIP Date", choices=["start","middle","end"])
sip_amount = gr.Number(label="SIP Amount (₹)")
schemes_list = gr.State([])
with gr.Row():
scheme_dropdown = gr.Dropdown(label="Select Scheme", choices=[], allow_custom_value=True, interactive=True)
scheme_weight = gr.Slider(minimum=0, maximum=100, step=1, label="Scheme Weight (%)")
add_button = gr.Button("Add Scheme")
schemes_table = gr.Dataframe(
headers=["Scheme Name", "Weight (%)", "Actions"],
datatype=["str", "number", "str"],
col_count=(3, "fixed"),
label="Added Schemes",
type="pandas",
interactive=True
)
update_button = gr.Button("Update Schemes")
error_message = gr.Textbox(label="Error", visible=False)
calculate_button = gr.Button("Calculate Returns")
result = gr.Textbox(label="Results")
pie_chart = gr.Plot(label="Scheme Weightages")
final_value = gr.Number(label="Final Value (₹)", interactive=False)
total_investment = gr.Number(label="Total Investment (₹)", interactive=False)
def update_custom_date_visibility(period):
return {custom_start_date: gr.update(visible=period=="Custom"),
custom_end_date: gr.update(visible=period=="Custom")}
period.change(update_custom_date_visibility, inputs=[period], outputs=[custom_start_date, custom_end_date])
scheme_dropdown.key_up(
fn=update_scheme_dropdown,
inputs=[scheme_dropdown, gr.State(schemes_df)],
outputs=scheme_dropdown,
queue=False,
show_progress="hidden"
)
add_button.click(add_scheme_to_list,
inputs=[schemes_list, scheme_dropdown, scheme_weight],
outputs=[schemes_list, schemes_table, scheme_dropdown, scheme_weight])
def update_schemes_and_show_error(schemes_list, updated_data):
new_schemes_list, updated_table, error = update_schemes(schemes_list, updated_data)
return (
new_schemes_list,
updated_table,
gr.update(value=error, visible=bool(error))
)
update_button.click(
update_schemes_and_show_error,
inputs=[schemes_list, schemes_table],
outputs=[schemes_list, schemes_table, error_message]
)
schemes_table.select(
handle_row_selection,
inputs=[schemes_list, schemes_table],
outputs=[schemes_table, schemes_list]
)
calculate_button.click(
lambda *args: update_sip_calculator(*prepare_inputs(*args)),
inputs=[period, custom_start_date, custom_end_date,SIP_Date,sip_amount, schemes_list, gr.State(schemes_df)],
outputs=[result, pie_chart, final_value, total_investment]
)
return app
app = create_ui()
app.launch()