File size: 11,710 Bytes
faecf2c c5048d8 faecf2c c5048d8 faecf2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime, timedelta
import requests
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def get_nav_data(scheme_code):
url = f"https://api.mfapi.in/mf/{scheme_code}"
response = requests.get(url)
data = response.json()
df = pd.DataFrame(data['data'])
df['date'] = pd.to_datetime(df['date'], format='%d-%m-%Y')
df['nav'] = df['nav'].astype(float)
df = df.sort_values('date')
return df
def calculate_sip_returns(nav_data, sip_amount, start_date, end_date,SIP_Date):
start_date = pd.Timestamp(start_date)
end_date = pd.Timestamp(end_date)
nav_data_filtered = nav_data[(nav_data['date'] >= start_date) & (nav_data['date'] <= end_date)].copy()
nav_data_filtered['date'] = pd.to_datetime(nav_data_filtered['date'])
if SIP_Date == 'start':
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).head(1)
elif SIP_Date == 'end':
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).tail(1)
else:
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).apply(lambda x: x.iloc[len(x)//2])
units_accumulated = 0
total_investment = 0
for _, row in last_dates.iloc[:-1].iterrows():
units_bought = sip_amount / row['nav']
units_accumulated += units_bought
total_investment += sip_amount
final_value = units_accumulated * last_dates.iloc[-1]['nav']
total_return = (final_value - total_investment) / total_investment * 100
return total_return, final_value, total_investment
def create_pie_chart(schemes):
labels = list(schemes.keys())
values = list(schemes.values())
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
fig.update_layout(title_text="Scheme Weightages")
return fig
def calculate_portfolio_returns(schemes, sip_amount, start_date, end_date, SIP_date,schemes_df):
scheme_returns = []
total_investment = 0
final_value = 0
for scheme_name, scheme_weight in schemes.items():
scheme_code = schemes_df[schemes_df['schemeName'] == scheme_name]['schemeCode'].values[0]
nav_data = get_nav_data(scheme_code)
scheme_return, scheme_final_value, scheme_total_investment = calculate_sip_returns(nav_data, sip_amount * scheme_weight / 100, start_date, end_date,SIP_date)
scheme_returns.append((scheme_name, scheme_return))
final_value += scheme_final_value
total_investment += scheme_total_investment
portfolio_return = (final_value - total_investment) / total_investment * 100
return portfolio_return, final_value, total_investment, scheme_returns
def update_sip_calculator(*args):
period = args[0]
custom_start_date = args[1]
custom_end_date = args[2]
SIP_Date = args[3]
sip_amount = args[4]
schemes_df = args[5]
schemes = {}
for i in range(6, len(args), 2):
if args[i] and args[i+1]:
schemes[args[i]] = float(args[i+1])
if not schemes:
return "Please add at least one scheme.", None, None, None
total_weight = sum(schemes.values())
end_date = datetime.now().date()
if period == "Custom":
if not custom_start_date or not custom_end_date:
return "Please provide both start and end dates for custom period.", None, None, None
start_date = datetime.strptime(custom_start_date, "%Y-%m-%d").date()
end_date = datetime.strptime(custom_end_date, "%Y-%m-%d").date()
else:
years = int(period.split()[0])
start_date = end_date - timedelta(days=years*365)
try:
portfolio_return, final_value, total_investment, scheme_returns = calculate_portfolio_returns(schemes, sip_amount, start_date, end_date, SIP_Date,schemes_df)
except Exception as e:
return f"Error: {str(e)}", None, None, None
result = f"Total portfolio SIP return: {portfolio_return:.2f}%\n"
result += f"Total investment: ₹{total_investment:.2f}\n"
result += f"Final value: ₹{final_value:.2f}\n\n"
result += "Individual scheme returns:\n"
for scheme_name, scheme_return in scheme_returns:
result += f"{scheme_name}: {scheme_return:.2f}%\n"
pie_chart = create_pie_chart(schemes)
return result, pie_chart, final_value, total_investment
def fetch_scheme_data():
url = "https://api.mfapi.in/mf"
response = requests.get(url)
schemes = response.json()
return pd.DataFrame(schemes)
def quick_search_schemes(query, schemes_df):
if not query:
return []
matching_schemes = schemes_df[schemes_df['schemeName'].str.contains(query, case=False, na=False)]
return matching_schemes['schemeName'].tolist()[:40]
def update_scheme_dropdown(query, schemes_df, key_up_data: gr.KeyUpData):
schemes = quick_search_schemes(key_up_data.input_value, schemes_df)
return gr.update(choices=schemes, visible=True)
def update_schemes_list(schemes_list, updated_data):
new_schemes_list = []
for _, row in updated_data.iterrows():
scheme_name = row.get('Scheme Name')
weight = row.get('Weight (%)')
action = row.get('Actions')
if scheme_name and weight is not None and action != '🗑️': # Only keep rows that aren't marked for deletion
try:
weight_float = float(weight)
new_schemes_list.append((scheme_name, weight_float))
except ValueError:
# If weight is not a valid float, skip this row
continue
return new_schemes_list
def update_schemes_table(schemes_list):
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"])
df["Actions"] = "❌" # Use a different emoji to avoid confusion with the deletion mark
return df
def add_scheme_to_list(schemes_list, scheme_name, weight):
if scheme_name and weight:
new_list = schemes_list + [(scheme_name, float(weight))]
return new_list, update_schemes_table(new_list), None, 0
return schemes_list, update_schemes_table(schemes_list), scheme_name, weight
def update_schemes(schemes_list, updated_data):
try:
new_schemes_list = update_schemes_list(schemes_list, updated_data)
if not new_schemes_list:
return schemes_list, update_schemes_table(schemes_list), "No valid schemes found in the table."
return new_schemes_list, update_schemes_table(new_schemes_list), None
except Exception as e:
error_msg = f"Error updating schemes: {str(e)}"
return schemes_list, update_schemes_table(schemes_list), error_msg
def prepare_inputs(period, custom_start, custom_end,SIP_Date,sip_amount, schemes_list, schemes_df,):
inputs = [period, custom_start, custom_end,SIP_Date, sip_amount, schemes_df]
for name, weight in schemes_list:
inputs.extend([name, weight])
return inputs
def handle_row_selection(schemes_list, evt: gr.SelectData, table_data):
# print(f"Event data: {evt}")
# print(f"Event index: {evt.index}")
# print(f"Table data: {table_data}")
if evt.index is not None and len(evt.index) > 1:
column_index = evt.index[1]
if column_index == 2: # "Actions" column
row_index = evt.index[0]
# Remove the row instead of marking it
table_data = table_data.drop(row_index).reset_index(drop=True)
# Update the schemes_list
updated_schemes_list = [(row['Scheme Name'], row['Weight (%)']) for _, row in table_data.iterrows()]
return table_data, updated_schemes_list
return table_data, schemes_list
def update_schemes_table(schemes_list):
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"])
df["Actions"] = "❌"
return df
def create_ui():
schemes_df = fetch_scheme_data()
with gr.Blocks(js=js_func) as app:
gr.Markdown("# Mutual Fund SIP Returns Calculator")
with gr.Row():
period = gr.Dropdown(choices=["1 year", "3 years", "5 years", "7 years", "10 years", "Custom"], label="Select Period")
custom_start_date = gr.Textbox(label="Custom Start Date (YYYY-MM-DD)", visible=False)
custom_end_date = gr.Textbox(label="Custom End Date (YYYY-MM-DD)", visible=False)
SIP_Date = gr.Dropdown(label="SIP Date", choices=["start","middle","end"])
sip_amount = gr.Number(label="SIP Amount (₹)")
schemes_list = gr.State([])
with gr.Row():
scheme_dropdown = gr.Dropdown(label="Select Scheme", choices=[], allow_custom_value=True, interactive=True)
scheme_weight = gr.Slider(minimum=0, maximum=100, step=1, label="Scheme Weight (%)")
add_button = gr.Button("Add Scheme")
schemes_table = gr.Dataframe(
headers=["Scheme Name", "Weight (%)", "Actions"],
datatype=["str", "number", "str"],
col_count=(3, "fixed"),
label="Added Schemes",
type="pandas",
interactive=True
)
update_button = gr.Button("Update Schemes")
error_message = gr.Textbox(label="Error", visible=False)
calculate_button = gr.Button("Calculate Returns")
result = gr.Textbox(label="Results")
pie_chart = gr.Plot(label="Scheme Weightages")
final_value = gr.Number(label="Final Value (₹)", interactive=False)
total_investment = gr.Number(label="Total Investment (₹)", interactive=False)
def update_custom_date_visibility(period):
return {custom_start_date: gr.update(visible=period=="Custom"),
custom_end_date: gr.update(visible=period=="Custom")}
period.change(update_custom_date_visibility, inputs=[period], outputs=[custom_start_date, custom_end_date])
scheme_dropdown.key_up(
fn=update_scheme_dropdown,
inputs=[scheme_dropdown, gr.State(schemes_df)],
outputs=scheme_dropdown,
queue=False,
show_progress="hidden"
)
add_button.click(add_scheme_to_list,
inputs=[schemes_list, scheme_dropdown, scheme_weight],
outputs=[schemes_list, schemes_table, scheme_dropdown, scheme_weight])
def update_schemes_and_show_error(schemes_list, updated_data):
new_schemes_list, updated_table, error = update_schemes(schemes_list, updated_data)
return (
new_schemes_list,
updated_table,
gr.update(value=error, visible=bool(error))
)
update_button.click(
update_schemes_and_show_error,
inputs=[schemes_list, schemes_table],
outputs=[schemes_list, schemes_table, error_message]
)
schemes_table.select(
handle_row_selection,
inputs=[schemes_list, schemes_table],
outputs=[schemes_table, schemes_list]
)
calculate_button.click(
lambda *args: update_sip_calculator(*prepare_inputs(*args)),
inputs=[period, custom_start_date, custom_end_date,SIP_Date,sip_amount, schemes_list, gr.State(schemes_df)],
outputs=[result, pie_chart, final_value, total_investment]
)
return app
app = create_ui()
app.launch() |