tree3po's picture
Upload 21 files
12aae2e verified
raw
history blame
12.1 kB
"""
References:
- DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
- Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/unet3d.py
- Latte: https://github.com/Vchitect/Latte/blob/main/models/latte.py
"""
from typing import Optional, Literal
import torch
from torch import nn
from rotary_embedding_torch import RotaryEmbedding
from einops import rearrange
from embeddings import Timesteps, TimestepEmbedding
from attention import SpatialAxialAttention, TemporalAxialAttention
from timm.models.vision_transformer import Mlp
from timm.layers.helpers import to_2tuple
import math
def modulate(x, shift, scale):
fixed_dims = [1] * len(shift.shape[1:])
shift = shift.repeat(x.shape[0] // shift.shape[0], *fixed_dims)
scale = scale.repeat(x.shape[0] // scale.shape[0], *fixed_dims)
while shift.dim() < x.dim():
shift = shift.unsqueeze(-2)
scale = scale.unsqueeze(-2)
return x * (1 + scale) + shift
def gate(x, g):
fixed_dims = [1] * len(g.shape[1:])
g = g.repeat(x.shape[0] // g.shape[0], *fixed_dims)
while g.dim() < x.dim():
g = g.unsqueeze(-2)
return g * x
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_height=256,
img_width=256,
patch_size=16,
in_chans=3,
embed_dim=768,
norm_layer=None,
flatten=True,
):
super().__init__()
img_size = (img_height, img_width)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x, random_sample=False):
B, C, H, W = x.shape
assert random_sample or (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = rearrange(x, "B C H W -> B (H W) C")
else:
x = rearrange(x, "B C H W -> B H W C")
x = self.norm(x)
return x
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True), # hidden_size is diffusion model hidden size
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class SpatioTemporalDiTBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, is_causal=True, spatial_rotary_emb: Optional[RotaryEmbedding] = None, temporal_rotary_emb: Optional[RotaryEmbedding] = None):
super().__init__()
self.is_causal = is_causal
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.s_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.s_attn = SpatialAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, rotary_emb=spatial_rotary_emb)
self.s_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.s_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.s_adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
self.t_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.t_attn = TemporalAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, is_causal=is_causal, rotary_emb=temporal_rotary_emb)
self.t_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.t_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.t_adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
B, T, H, W, D = x.shape
# spatial block
s_shift_msa, s_scale_msa, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = self.s_adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate(self.s_attn(modulate(self.s_norm1(x), s_shift_msa, s_scale_msa)), s_gate_msa)
x = x + gate(self.s_mlp(modulate(self.s_norm2(x), s_shift_mlp, s_scale_mlp)), s_gate_mlp)
# temporal block
t_shift_msa, t_scale_msa, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = self.t_adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate(self.t_attn(modulate(self.t_norm1(x), t_shift_msa, t_scale_msa)), t_gate_msa)
x = x + gate(self.t_mlp(modulate(self.t_norm2(x), t_shift_mlp, t_scale_mlp)), t_gate_mlp)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_h=18,
input_w=32,
patch_size=2,
in_channels=16,
hidden_size=1024,
depth=12,
num_heads=16,
mlp_ratio=4.0,
external_cond_dim=25,
max_frames=32,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.max_frames = max_frames
self.x_embedder = PatchEmbed(input_h, input_w, patch_size, in_channels, hidden_size, flatten=False)
self.t_embedder = TimestepEmbedder(hidden_size)
frame_h, frame_w = self.x_embedder.grid_size
self.spatial_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads // 2, freqs_for="pixel", max_freq=256)
self.temporal_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads)
self.external_cond = nn.Linear(external_cond_dim, hidden_size) if external_cond_dim > 0 else nn.Identity()
self.blocks = nn.ModuleList(
[
SpatioTemporalDiTBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
is_causal=True,
spatial_rotary_emb=self.spatial_rotary_emb,
temporal_rotary_emb=self.temporal_rotary_emb,
)
for _ in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.s_adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.s_adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.t_adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.t_adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, H, W, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = x.shape[1]
w = x.shape[2]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def forward(self, x, t, external_cond=None):
"""
Forward pass of DiT.
x: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (B, T,) tensor of diffusion timesteps
"""
B, T, C, H, W = x.shape
# add spatial embeddings
x = rearrange(x, "b t c h w -> (b t) c h w")
x = self.x_embedder(x) # (B*T, C, H, W) -> (B*T, H/2, W/2, D) , C = 16, D = d_model
# restore shape
x = rearrange(x, "(b t) h w d -> b t h w d", t = T)
# embed noise steps
t = rearrange(t, "b t -> (b t)")
c = self.t_embedder(t) # (N, D)
c = rearrange(c, "(b t) d -> b t d", t = T)
if torch.is_tensor(external_cond):
c += self.external_cond(external_cond)
for block in self.blocks:
x = block(x, c) # (N, T, H, W, D)
x = self.final_layer(x, c) # (N, T, H, W, patch_size ** 2 * out_channels)
# unpatchify
x = rearrange(x, "b t h w d -> (b t) h w d")
x = self.unpatchify(x) # (N, out_channels, H, W)
x = rearrange(x, "(b t) c h w -> b t c h w", t = T)
return x
def DiT_S_2():
return DiT(
patch_size=2,
hidden_size=1024,
depth=16,
num_heads=16,
)
DiT_models = {
"DiT-S/2": DiT_S_2
}