Spaces:
Runtime error
Runtime error
""" | |
References: | |
- DiT: https://github.com/facebookresearch/DiT/blob/main/models.py | |
- Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/unet3d.py | |
- Latte: https://github.com/Vchitect/Latte/blob/main/models/latte.py | |
""" | |
from typing import Optional, Literal | |
import torch | |
from torch import nn | |
from rotary_embedding_torch import RotaryEmbedding | |
from einops import rearrange | |
from embeddings import Timesteps, TimestepEmbedding | |
from attention import SpatialAxialAttention, TemporalAxialAttention | |
from timm.models.vision_transformer import Mlp | |
from timm.layers.helpers import to_2tuple | |
import math | |
def modulate(x, shift, scale): | |
fixed_dims = [1] * len(shift.shape[1:]) | |
shift = shift.repeat(x.shape[0] // shift.shape[0], *fixed_dims) | |
scale = scale.repeat(x.shape[0] // scale.shape[0], *fixed_dims) | |
while shift.dim() < x.dim(): | |
shift = shift.unsqueeze(-2) | |
scale = scale.unsqueeze(-2) | |
return x * (1 + scale) + shift | |
def gate(x, g): | |
fixed_dims = [1] * len(g.shape[1:]) | |
g = g.repeat(x.shape[0] // g.shape[0], *fixed_dims) | |
while g.dim() < x.dim(): | |
g = g.unsqueeze(-2) | |
return g * x | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
img_height=256, | |
img_width=256, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
norm_layer=None, | |
flatten=True, | |
): | |
super().__init__() | |
img_size = (img_height, img_width) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.flatten = flatten | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size | |
) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x, random_sample=False): | |
B, C, H, W = x.shape | |
assert random_sample or ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x) | |
if self.flatten: | |
x = rearrange(x, "B C H W -> B (H W) C") | |
else: | |
x = rearrange(x, "B C H W -> B H W C") | |
x = self.norm(x) | |
return x | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), # hidden_size is diffusion model hidden size | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class SpatioTemporalDiTBlock(nn.Module): | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, is_causal=True, spatial_rotary_emb: Optional[RotaryEmbedding] = None, temporal_rotary_emb: Optional[RotaryEmbedding] = None): | |
super().__init__() | |
self.is_causal = is_causal | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.s_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.s_attn = SpatialAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, rotary_emb=spatial_rotary_emb) | |
self.s_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.s_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
self.s_adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
) | |
self.t_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.t_attn = TemporalAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, is_causal=is_causal, rotary_emb=temporal_rotary_emb) | |
self.t_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.t_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
self.t_adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
B, T, H, W, D = x.shape | |
# spatial block | |
s_shift_msa, s_scale_msa, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = self.s_adaLN_modulation(c).chunk(6, dim=-1) | |
x = x + gate(self.s_attn(modulate(self.s_norm1(x), s_shift_msa, s_scale_msa)), s_gate_msa) | |
x = x + gate(self.s_mlp(modulate(self.s_norm2(x), s_shift_mlp, s_scale_mlp)), s_gate_mlp) | |
# temporal block | |
t_shift_msa, t_scale_msa, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = self.t_adaLN_modulation(c).chunk(6, dim=-1) | |
x = x + gate(self.t_attn(modulate(self.t_norm1(x), t_shift_msa, t_scale_msa)), t_gate_msa) | |
x = x + gate(self.t_mlp(modulate(self.t_norm2(x), t_shift_mlp, t_scale_mlp)), t_gate_mlp) | |
return x | |
class DiT(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_h=18, | |
input_w=32, | |
patch_size=2, | |
in_channels=16, | |
hidden_size=1024, | |
depth=12, | |
num_heads=16, | |
mlp_ratio=4.0, | |
external_cond_dim=25, | |
max_frames=32, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.max_frames = max_frames | |
self.x_embedder = PatchEmbed(input_h, input_w, patch_size, in_channels, hidden_size, flatten=False) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
frame_h, frame_w = self.x_embedder.grid_size | |
self.spatial_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads // 2, freqs_for="pixel", max_freq=256) | |
self.temporal_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads) | |
self.external_cond = nn.Linear(external_cond_dim, hidden_size) if external_cond_dim > 0 else nn.Identity() | |
self.blocks = nn.ModuleList( | |
[ | |
SpatioTemporalDiTBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
is_causal=True, | |
spatial_rotary_emb=self.spatial_rotary_emb, | |
temporal_rotary_emb=self.temporal_rotary_emb, | |
) | |
for _ in range(depth) | |
] | |
) | |
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.s_adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.s_adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(block.t_adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.t_adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def unpatchify(self, x): | |
""" | |
x: (N, H, W, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
h = x.shape[1] | |
w = x.shape[2] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
return imgs | |
def forward(self, x, t, external_cond=None): | |
""" | |
Forward pass of DiT. | |
x: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (B, T,) tensor of diffusion timesteps | |
""" | |
B, T, C, H, W = x.shape | |
# add spatial embeddings | |
x = rearrange(x, "b t c h w -> (b t) c h w") | |
x = self.x_embedder(x) # (B*T, C, H, W) -> (B*T, H/2, W/2, D) , C = 16, D = d_model | |
# restore shape | |
x = rearrange(x, "(b t) h w d -> b t h w d", t = T) | |
# embed noise steps | |
t = rearrange(t, "b t -> (b t)") | |
c = self.t_embedder(t) # (N, D) | |
c = rearrange(c, "(b t) d -> b t d", t = T) | |
if torch.is_tensor(external_cond): | |
c += self.external_cond(external_cond) | |
for block in self.blocks: | |
x = block(x, c) # (N, T, H, W, D) | |
x = self.final_layer(x, c) # (N, T, H, W, patch_size ** 2 * out_channels) | |
# unpatchify | |
x = rearrange(x, "b t h w d -> (b t) h w d") | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
x = rearrange(x, "(b t) c h w -> b t c h w", t = T) | |
return x | |
def DiT_S_2(): | |
return DiT( | |
patch_size=2, | |
hidden_size=1024, | |
depth=16, | |
num_heads=16, | |
) | |
DiT_models = { | |
"DiT-S/2": DiT_S_2 | |
} | |