Spaces:
Runtime error
Runtime error
File size: 12,119 Bytes
12aae2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
"""
References:
- DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
- Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/unet3d.py
- Latte: https://github.com/Vchitect/Latte/blob/main/models/latte.py
"""
from typing import Optional, Literal
import torch
from torch import nn
from rotary_embedding_torch import RotaryEmbedding
from einops import rearrange
from embeddings import Timesteps, TimestepEmbedding
from attention import SpatialAxialAttention, TemporalAxialAttention
from timm.models.vision_transformer import Mlp
from timm.layers.helpers import to_2tuple
import math
def modulate(x, shift, scale):
fixed_dims = [1] * len(shift.shape[1:])
shift = shift.repeat(x.shape[0] // shift.shape[0], *fixed_dims)
scale = scale.repeat(x.shape[0] // scale.shape[0], *fixed_dims)
while shift.dim() < x.dim():
shift = shift.unsqueeze(-2)
scale = scale.unsqueeze(-2)
return x * (1 + scale) + shift
def gate(x, g):
fixed_dims = [1] * len(g.shape[1:])
g = g.repeat(x.shape[0] // g.shape[0], *fixed_dims)
while g.dim() < x.dim():
g = g.unsqueeze(-2)
return g * x
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_height=256,
img_width=256,
patch_size=16,
in_chans=3,
embed_dim=768,
norm_layer=None,
flatten=True,
):
super().__init__()
img_size = (img_height, img_width)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x, random_sample=False):
B, C, H, W = x.shape
assert random_sample or (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = rearrange(x, "B C H W -> B (H W) C")
else:
x = rearrange(x, "B C H W -> B H W C")
x = self.norm(x)
return x
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True), # hidden_size is diffusion model hidden size
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class SpatioTemporalDiTBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, is_causal=True, spatial_rotary_emb: Optional[RotaryEmbedding] = None, temporal_rotary_emb: Optional[RotaryEmbedding] = None):
super().__init__()
self.is_causal = is_causal
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.s_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.s_attn = SpatialAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, rotary_emb=spatial_rotary_emb)
self.s_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.s_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.s_adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
self.t_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.t_attn = TemporalAxialAttention(hidden_size, heads=num_heads, dim_head=hidden_size // num_heads, is_causal=is_causal, rotary_emb=temporal_rotary_emb)
self.t_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.t_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.t_adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
B, T, H, W, D = x.shape
# spatial block
s_shift_msa, s_scale_msa, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = self.s_adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate(self.s_attn(modulate(self.s_norm1(x), s_shift_msa, s_scale_msa)), s_gate_msa)
x = x + gate(self.s_mlp(modulate(self.s_norm2(x), s_shift_mlp, s_scale_mlp)), s_gate_mlp)
# temporal block
t_shift_msa, t_scale_msa, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = self.t_adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate(self.t_attn(modulate(self.t_norm1(x), t_shift_msa, t_scale_msa)), t_gate_msa)
x = x + gate(self.t_mlp(modulate(self.t_norm2(x), t_shift_mlp, t_scale_mlp)), t_gate_mlp)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_h=18,
input_w=32,
patch_size=2,
in_channels=16,
hidden_size=1024,
depth=12,
num_heads=16,
mlp_ratio=4.0,
external_cond_dim=25,
max_frames=32,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.max_frames = max_frames
self.x_embedder = PatchEmbed(input_h, input_w, patch_size, in_channels, hidden_size, flatten=False)
self.t_embedder = TimestepEmbedder(hidden_size)
frame_h, frame_w = self.x_embedder.grid_size
self.spatial_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads // 2, freqs_for="pixel", max_freq=256)
self.temporal_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads)
self.external_cond = nn.Linear(external_cond_dim, hidden_size) if external_cond_dim > 0 else nn.Identity()
self.blocks = nn.ModuleList(
[
SpatioTemporalDiTBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
is_causal=True,
spatial_rotary_emb=self.spatial_rotary_emb,
temporal_rotary_emb=self.temporal_rotary_emb,
)
for _ in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.s_adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.s_adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.t_adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.t_adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, H, W, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = x.shape[1]
w = x.shape[2]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def forward(self, x, t, external_cond=None):
"""
Forward pass of DiT.
x: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (B, T,) tensor of diffusion timesteps
"""
B, T, C, H, W = x.shape
# add spatial embeddings
x = rearrange(x, "b t c h w -> (b t) c h w")
x = self.x_embedder(x) # (B*T, C, H, W) -> (B*T, H/2, W/2, D) , C = 16, D = d_model
# restore shape
x = rearrange(x, "(b t) h w d -> b t h w d", t = T)
# embed noise steps
t = rearrange(t, "b t -> (b t)")
c = self.t_embedder(t) # (N, D)
c = rearrange(c, "(b t) d -> b t d", t = T)
if torch.is_tensor(external_cond):
c += self.external_cond(external_cond)
for block in self.blocks:
x = block(x, c) # (N, T, H, W, D)
x = self.final_layer(x, c) # (N, T, H, W, patch_size ** 2 * out_channels)
# unpatchify
x = rearrange(x, "b t h w d -> (b t) h w d")
x = self.unpatchify(x) # (N, out_channels, H, W)
x = rearrange(x, "(b t) c h w -> b t c h w", t = T)
return x
def DiT_S_2():
return DiT(
patch_size=2,
hidden_size=1024,
depth=16,
num_heads=16,
)
DiT_models = {
"DiT-S/2": DiT_S_2
}
|