Spaces:
Build error
Build error
File size: 14,558 Bytes
9fd062d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from hellaswag import render_example, iterate_examples
# --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# From original transformer model gpt2 only have decoder part and also the cross-attention is not used.
# Also there's reshuffling layer-norms and Additional Layer normalization is added right before the soft-max layer.
class CausalSelfAttention(nn.Module): # this class combined the self-attention mechanism and multi-head attention mechanism in one class
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0 # n_emb is the embedding size and n_head is the number of heads in the multi-head attention mechanism
# (so the embedding size should be divisible by the number of heads)
self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd) # Linear layer for the query, key and value projections for all heads, but in batch
self.c_proj = nn.Linear(config.n_embd, config.n_embd) # Linear layer for the final output projection
self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
# Regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1,1,config.block_size, config.block_size)) # Lower triangular matrix for masking future tokens
def forward(self,x):
B, T, C = x.size() # batch size, Sequence length, Embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dimension
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# eg: in GPT-2 (124M), n_head=12, hs=64, so nh*hs = C = 768 channels in Transformer (channels is also called as hidden size)
qkv = self.c_attn(x) # qkv is the query, key and value projections for all heads
q,k,v = qkv.split(self.n_embd, dim=2) # Splitting the qkv into query, key and value projections
k = k.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
q = q.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
v = v.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
# attention (materializes the large (T,T) matrix for all queries and keys)
# att = ([email protected](-2,-1))*(1.0 / math.sqrt(k.size(-1))) # Multiplying the query and key and scaling it by the square root of the key size
# att = att.masked_fill(self.bias[:,:,:T,:T]==0, float('-inf')) # Masking the future tokens
# att = F.softmax(att, dim=-1) # Softmax over the last dimension
# y = att@v # Multiplying the attention weights with the values (B,nh,T,T) x (B,nh,T,hs) = (B,nh,T,hs)
# Attention on GPT2: ( matmul + mask + softmax + dropout + matmul ) ==> 15ms
# Flash Attention: Fused Kernel ==> 2.5ms
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1,2).contiguous().view(B,T,C) # re-assemble all head outputs side by side
# Output Projection
y = self.c_proj(y) # Projecting the output to the original size
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__() # Inheriting from the parent class nn.Module
self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd) # Fully connected layer for the first part of the MLP which takes the input and projects it to 4 times the size of the input
self.gelu = nn.GELU(approximate='tanh') # GELU activation function
self.c_proj = nn.Linear(4*config.n_embd, config.n_embd) # Fully connected layer for the second part of the MLP which projects the output of the previous layer to the original size
self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
def forward(self,x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
# Block is basically a transformer block which consists of a self-attention mechanism and a feed-forward neural network (decoder part)
class Block(nn.Module):
def __init__(self,config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd) # Layer normalization before the self-attention
self.attn = CausalSelfAttention(config) # Self-attention mechanism
self.ln_2 = nn.LayerNorm(config.n_embd) # Layer normalization after the self-attention
self.mlp = MLP(config) # Multi-layer perceptron for each position
# forward pass of the block, the input x is the sequence of embeddings and return is the updated sequence of embeddings
def forward(self,x):
x = x + self.attn(self.ln_1(x)) # residual connection followed by self-attention
# Our text first goes to ln_1, then to the self-attention mechanism, then to ln_2, and finally to the MLP
x = x + self.mlp(self.ln_2(x)) # residual connection followed by MLP (ffn)
# In attention 1024 sequence lined up communicated with each other & exchange info.
# Whereas MLP happens to every single token individually and there's no communication between tokens or exchange of information between tokens.
return x
@dataclass
class GPTConfig:
# block_size: int = 256 # maximum sequence length
# vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
# n_layer: int = 12 # number of transformer layers
# n_head: int = 12 # number of heads in the multi-head attention mechanism
# n_embd: int = 768 # embedding dimension of each token
# # changed the default values of the parameters
block_size: int = 256 # maximum sequence length
vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
n_layer: int = 6 # number of transformer layers
n_head: int = 6 # number of heads in the multi-head attention mechanism
n_embd: int = 768 # embedding dimension of each token
class GPT(nn.Module): # Kind of skeleton of the model
def __init__(self,config):
super().__init__()
self.config = config
# transformer is the main container and it have further sub-modules like wte, wpe, h, ln_f
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd), # token embedding weights
wpe = nn.Embedding(config.block_size, config.n_embd), # positional embedding weights
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # transformer blocks as a list of n_layer (h is hidden layer)
ln_f = nn.LayerNorm(config.n_embd), # final layer normalization before the softmax
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias = False) # language model head is a linear layer with vocab_size output
# Weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight # weight tying the token embeddings with the pre-softmax linear transformation, using this we saved 40m parameters
# init parameters
self.apply(self._init_weights) # initializing the weights of the model
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2*self.config.n_layer)**-0.5 # scale by the number of layers
torch.nn.init.normal_(module.weight, mean=0.0, std = std) # initializing the weights of the linear layer with normal distribution
if module.bias is not None:
torch.nn.init.zeros_(module.bias) # initializing the bias of the linear layer with zeros
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self,idx, targets= None):
# idx is of shape [batch_size, sequence_length] (B,T)
B,T = idx.size() # batch size and sequence length
assert T<=self.config.block_size ,f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and position embeddings
pos = torch.arange(0, T, dtype = torch.long, device =idx.device) # tensor of shape [T]
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B,T,n_embd)
x = tok_emb + pos_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# Forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B,T,vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Cross-entropy flattens out the 3D (B,T,vocab_size) tensor to 2D
# (B*T,vocab_size) tensor, It also flattens out the target tensor to 1D tensor
return logits , loss
@classmethod
def from_pretrained(cls, model_type):
"""Load pretrained GPT2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} # Checking if the model type is valid
print("Loading weights from pretrained gpt: %s" %model_type)
from transformers import GPT2LMHeadModel
# n_layer, n_head, and n_embd are determined by the model type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M parameters
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M parameters
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M parameters
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M parameters
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoint
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict() # state_dict is the model weights
sd_keys = sd.keys() # keys are the names of the weights
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer key, not parameters of the model
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned correctly and matches in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
# missing in sd_keys: lm_head.weight
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model # return the model with the pretrained weights
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require gradients)
param_dict = {pn: p for pn, p in self.named_parameters()} # named parameters
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # only parameters that require gradients
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings, all biases and layernorm don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] # weight tensors in matmuls + embeddings
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] # biases and layernorm
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
if master_process:
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters # check if fused is available in AdamW
use_fused = fused_available and device_type == "cuda"
if master_process:
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
|