temporary0-0name commited on
Commit
9fd062d
1 Parent(s): 72392d5

Update gpt_class.py

Browse files
Files changed (1) hide show
  1. gpt_class.py +252 -0
gpt_class.py CHANGED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import time
4
+ import inspect
5
+ from dataclasses import dataclass
6
+ import torch
7
+ import torch.nn as nn
8
+ from torch.nn import functional as F
9
+ from hellaswag import render_example, iterate_examples
10
+ # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
11
+ # From original transformer model gpt2 only have decoder part and also the cross-attention is not used.
12
+ # Also there's reshuffling layer-norms and Additional Layer normalization is added right before the soft-max layer.
13
+
14
+ class CausalSelfAttention(nn.Module): # this class combined the self-attention mechanism and multi-head attention mechanism in one class
15
+
16
+ def __init__(self, config):
17
+ super().__init__()
18
+
19
+ assert config.n_embd % config.n_head == 0 # n_emb is the embedding size and n_head is the number of heads in the multi-head attention mechanism
20
+ # (so the embedding size should be divisible by the number of heads)
21
+ self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd) # Linear layer for the query, key and value projections for all heads, but in batch
22
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd) # Linear layer for the final output projection
23
+ self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
24
+
25
+ # Regularization
26
+ self.n_head = config.n_head
27
+ self.n_embd = config.n_embd
28
+
29
+ # self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1,1,config.block_size, config.block_size)) # Lower triangular matrix for masking future tokens
30
+
31
+ def forward(self,x):
32
+ B, T, C = x.size() # batch size, Sequence length, Embedding dimensionality (n_embd)
33
+
34
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dimension
35
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
36
+ # eg: in GPT-2 (124M), n_head=12, hs=64, so nh*hs = C = 768 channels in Transformer (channels is also called as hidden size)
37
+ qkv = self.c_attn(x) # qkv is the query, key and value projections for all heads
38
+ q,k,v = qkv.split(self.n_embd, dim=2) # Splitting the qkv into query, key and value projections
39
+
40
+ k = k.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
41
+ q = q.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
42
+ v = v.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
43
+
44
+ # attention (materializes the large (T,T) matrix for all queries and keys)
45
+
46
+ # att = ([email protected](-2,-1))*(1.0 / math.sqrt(k.size(-1))) # Multiplying the query and key and scaling it by the square root of the key size
47
+ # att = att.masked_fill(self.bias[:,:,:T,:T]==0, float('-inf')) # Masking the future tokens
48
+ # att = F.softmax(att, dim=-1) # Softmax over the last dimension
49
+ # y = att@v # Multiplying the attention weights with the values (B,nh,T,T) x (B,nh,T,hs) = (B,nh,T,hs)
50
+
51
+ # Attention on GPT2: ( matmul + mask + softmax + dropout + matmul ) ==> 15ms
52
+ # Flash Attention: Fused Kernel ==> 2.5ms
53
+
54
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
55
+
56
+ y = y.transpose(1,2).contiguous().view(B,T,C) # re-assemble all head outputs side by side
57
+
58
+ # Output Projection
59
+ y = self.c_proj(y) # Projecting the output to the original size
60
+ return y
61
+
62
+
63
+ class MLP(nn.Module):
64
+
65
+ def __init__(self, config):
66
+ super().__init__() # Inheriting from the parent class nn.Module
67
+ self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd) # Fully connected layer for the first part of the MLP which takes the input and projects it to 4 times the size of the input
68
+ self.gelu = nn.GELU(approximate='tanh') # GELU activation function
69
+ self.c_proj = nn.Linear(4*config.n_embd, config.n_embd) # Fully connected layer for the second part of the MLP which projects the output of the previous layer to the original size
70
+ self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
71
+
72
+
73
+ def forward(self,x):
74
+ x = self.c_fc(x)
75
+ x = self.gelu(x)
76
+ x = self.c_proj(x)
77
+ return x
78
+
79
+
80
+ # Block is basically a transformer block which consists of a self-attention mechanism and a feed-forward neural network (decoder part)
81
+ class Block(nn.Module):
82
+
83
+ def __init__(self,config):
84
+ super().__init__()
85
+ self.ln_1 = nn.LayerNorm(config.n_embd) # Layer normalization before the self-attention
86
+ self.attn = CausalSelfAttention(config) # Self-attention mechanism
87
+ self.ln_2 = nn.LayerNorm(config.n_embd) # Layer normalization after the self-attention
88
+ self.mlp = MLP(config) # Multi-layer perceptron for each position
89
+
90
+ # forward pass of the block, the input x is the sequence of embeddings and return is the updated sequence of embeddings
91
+ def forward(self,x):
92
+ x = x + self.attn(self.ln_1(x)) # residual connection followed by self-attention
93
+ # Our text first goes to ln_1, then to the self-attention mechanism, then to ln_2, and finally to the MLP
94
+ x = x + self.mlp(self.ln_2(x)) # residual connection followed by MLP (ffn)
95
+ # In attention 1024 sequence lined up communicated with each other & exchange info.
96
+ # Whereas MLP happens to every single token individually and there's no communication between tokens or exchange of information between tokens.
97
+ return x
98
+
99
+ @dataclass
100
+ class GPTConfig:
101
+ # block_size: int = 256 # maximum sequence length
102
+ # vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
103
+ # n_layer: int = 12 # number of transformer layers
104
+ # n_head: int = 12 # number of heads in the multi-head attention mechanism
105
+ # n_embd: int = 768 # embedding dimension of each token
106
+
107
+ # # changed the default values of the parameters
108
+ block_size: int = 256 # maximum sequence length
109
+ vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
110
+ n_layer: int = 6 # number of transformer layers
111
+ n_head: int = 6 # number of heads in the multi-head attention mechanism
112
+ n_embd: int = 768 # embedding dimension of each token
113
+
114
+ class GPT(nn.Module): # Kind of skeleton of the model
115
+
116
+ def __init__(self,config):
117
+ super().__init__()
118
+ self.config = config
119
+
120
+ # transformer is the main container and it have further sub-modules like wte, wpe, h, ln_f
121
+ self.transformer = nn.ModuleDict(dict(
122
+ wte = nn.Embedding(config.vocab_size, config.n_embd), # token embedding weights
123
+ wpe = nn.Embedding(config.block_size, config.n_embd), # positional embedding weights
124
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # transformer blocks as a list of n_layer (h is hidden layer)
125
+ ln_f = nn.LayerNorm(config.n_embd), # final layer normalization before the softmax
126
+ ))
127
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias = False) # language model head is a linear layer with vocab_size output
128
+
129
+ # Weight sharing scheme
130
+ self.transformer.wte.weight = self.lm_head.weight # weight tying the token embeddings with the pre-softmax linear transformation, using this we saved 40m parameters
131
+
132
+ # init parameters
133
+ self.apply(self._init_weights) # initializing the weights of the model
134
+
135
+ def _init_weights(self, module):
136
+ if isinstance(module, nn.Linear):
137
+ std = 0.02
138
+ if hasattr(module, 'NANOGPT_SCALE_INIT'):
139
+ std *= (2*self.config.n_layer)**-0.5 # scale by the number of layers
140
+ torch.nn.init.normal_(module.weight, mean=0.0, std = std) # initializing the weights of the linear layer with normal distribution
141
+ if module.bias is not None:
142
+ torch.nn.init.zeros_(module.bias) # initializing the bias of the linear layer with zeros
143
+ elif isinstance(module, nn.Embedding):
144
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
145
+
146
+
147
+ def forward(self,idx, targets= None):
148
+ # idx is of shape [batch_size, sequence_length] (B,T)
149
+ B,T = idx.size() # batch size and sequence length
150
+ assert T<=self.config.block_size ,f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
151
+
152
+ # forward the token and position embeddings
153
+ pos = torch.arange(0, T, dtype = torch.long, device =idx.device) # tensor of shape [T]
154
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
155
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (B,T,n_embd)
156
+ x = tok_emb + pos_emb
157
+
158
+ # forward the blocks of the transformer
159
+ for block in self.transformer.h:
160
+ x = block(x)
161
+ # Forward the final layernorm and the classifier
162
+ x = self.transformer.ln_f(x)
163
+ logits = self.lm_head(x) # (B,T,vocab_size)
164
+ loss = None
165
+ if targets is not None:
166
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Cross-entropy flattens out the 3D (B,T,vocab_size) tensor to 2D
167
+ # (B*T,vocab_size) tensor, It also flattens out the target tensor to 1D tensor
168
+ return logits , loss
169
+
170
+
171
+ @classmethod
172
+ def from_pretrained(cls, model_type):
173
+ """Load pretrained GPT2 model weights from huggingface"""
174
+
175
+ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} # Checking if the model type is valid
176
+
177
+ print("Loading weights from pretrained gpt: %s" %model_type)
178
+ from transformers import GPT2LMHeadModel
179
+ # n_layer, n_head, and n_embd are determined by the model type
180
+
181
+ config_args = {
182
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M parameters
183
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M parameters
184
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M parameters
185
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M parameters
186
+ }[model_type]
187
+
188
+ config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
189
+ config_args['block_size'] = 1024 # always 1024 for GPT model checkpoint
190
+
191
+ # create a from-scratch initialized minGPT model
192
+ config = GPTConfig(**config_args)
193
+ model = GPT(config)
194
+ sd = model.state_dict() # state_dict is the model weights
195
+ sd_keys = sd.keys() # keys are the names of the weights
196
+ sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer key, not parameters of the model
197
+
198
+ # init a huggingface/transformers model
199
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
200
+ sd_hf = model_hf.state_dict()
201
+
202
+ # copy while ensuring all of the parameters are aligned correctly and matches in names and shapes
203
+ sd_keys_hf = sd_hf.keys()
204
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
205
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
206
+ transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
207
+
208
+ # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
209
+ # this means that we have to transpose these weights when we import them
210
+ # missing in sd_keys: lm_head.weight
211
+
212
+ assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
213
+ for k in sd_keys_hf:
214
+ if any(k.endswith(w) for w in transposed):
215
+ # special treatment for the Conv1D weights we need to transpose
216
+ assert sd_hf[k].shape[::-1] == sd[k].shape
217
+ with torch.no_grad():
218
+ sd[k].copy_(sd_hf[k].t())
219
+ else:
220
+ # vanilla copy over the other parameters
221
+ assert sd_hf[k].shape == sd[k].shape
222
+ with torch.no_grad():
223
+ sd[k].copy_(sd_hf[k])
224
+
225
+ return model # return the model with the pretrained weights
226
+
227
+ def configure_optimizers(self, weight_decay, learning_rate, device_type):
228
+ # start with all of the candidate parameters (that require gradients)
229
+ param_dict = {pn: p for pn, p in self.named_parameters()} # named parameters
230
+ param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # only parameters that require gradients
231
+
232
+ # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
233
+ # i.e. all weight tensors in matmuls + embeddings, all biases and layernorm don't.
234
+ decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] # weight tensors in matmuls + embeddings
235
+ nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] # biases and layernorm
236
+ optim_groups = [
237
+ {'params': decay_params, 'weight_decay': weight_decay},
238
+ {'params': nodecay_params, 'weight_decay': 0.0}
239
+ ]
240
+
241
+ num_decay_params = sum(p.numel() for p in decay_params)
242
+ num_nodecay_params = sum(p.numel() for p in nodecay_params)
243
+ if master_process:
244
+ print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
245
+ print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
246
+ # Create AdamW optimizer and use the fused version if it is available
247
+ fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters # check if fused is available in AdamW
248
+ use_fused = fused_available and device_type == "cuda"
249
+ if master_process:
250
+ print(f"using fused AdamW: {use_fused}")
251
+ optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
252
+ return optimizer