Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
import yfinance as yf
|
6 |
import plotly.express as px
|
7 |
import plotly.graph_objects as go
|
|
|
8 |
|
9 |
from sklearn.preprocessing import MinMaxScaler
|
10 |
from tensorflow.keras.models import Sequential
|
@@ -21,11 +22,16 @@ end_date = st.sidebar.date_input('End Date')
|
|
21 |
# --- MAIN PAGE
|
22 |
st.header('Cryptocurrency Prediction')
|
23 |
|
24 |
-
col1, col2
|
25 |
with col1:
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
with col2:
|
28 |
-
|
29 |
|
30 |
ticker_obj = yf.Ticker(ticker)
|
31 |
|
@@ -63,7 +69,7 @@ split_ratio = 0.8 # Ratio of training set to total data
|
|
63 |
zero_base = True
|
64 |
lstm_neurons = 50
|
65 |
epochs = 100
|
66 |
-
batch_size = 128
|
67 |
loss = 'mean_squared_error'
|
68 |
dropout = 0.24
|
69 |
optimizer = 'adam'
|
@@ -91,8 +97,12 @@ model = build_lstm_model(X_train, output_size=1, neurons=lstm_neurons, dropout=d
|
|
91 |
# Saved Weights
|
92 |
file_path = "./LSTM_" + ticker + "_weights.h5"
|
93 |
|
94 |
-
#
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Step 4: Make predictions
|
98 |
preds = model.predict(X_test)
|
@@ -110,13 +120,13 @@ y_test = scaler.inverse_transform(y_test)
|
|
110 |
|
111 |
fig = px.line(x=model_data.index[-len(y_test):],
|
112 |
y=[y_test.flatten(), preds.flatten()])
|
113 |
-
newnames = {'wide_variable_0':'Real Values', 'wide_variable_1': 'Predictions'}
|
114 |
-
fig.for_each_trace(lambda t: t.update(name
|
115 |
-
legendgroup
|
116 |
-
hovertemplate
|
117 |
fig.update_layout(
|
118 |
xaxis_title="Date",
|
119 |
-
yaxis_title=ticker+" Price",
|
120 |
legend_title=" ")
|
121 |
st.write(fig)
|
122 |
|
@@ -125,34 +135,34 @@ st.write(fig)
|
|
125 |
about_data, news = st.tabs(["About", "News"])
|
126 |
|
127 |
with about_data:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
149 |
with news:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
5 |
import yfinance as yf
|
6 |
import plotly.express as px
|
7 |
import plotly.graph_objects as go
|
8 |
+
import os
|
9 |
|
10 |
from sklearn.preprocessing import MinMaxScaler
|
11 |
from tensorflow.keras.models import Sequential
|
|
|
22 |
# --- MAIN PAGE
|
23 |
st.header('Cryptocurrency Prediction')
|
24 |
|
25 |
+
col1, col2 = st.columns([1, 9])
|
26 |
with col1:
|
27 |
+
image_path = 'icons/' + ticker + '.png'
|
28 |
+
if os.path.exists(image_path):
|
29 |
+
st.image(image_path, width=75)
|
30 |
+
else:
|
31 |
+
st.warning(f"Image for {ticker} not found.")
|
32 |
+
|
33 |
with col2:
|
34 |
+
st.write(f" ## {ticker}")
|
35 |
|
36 |
ticker_obj = yf.Ticker(ticker)
|
37 |
|
|
|
69 |
zero_base = True
|
70 |
lstm_neurons = 50
|
71 |
epochs = 100
|
72 |
+
batch_size = 128
|
73 |
loss = 'mean_squared_error'
|
74 |
dropout = 0.24
|
75 |
optimizer = 'adam'
|
|
|
97 |
# Saved Weights
|
98 |
file_path = "./LSTM_" + ticker + "_weights.h5"
|
99 |
|
100 |
+
# Check if weights file exists
|
101 |
+
if os.path.exists(file_path):
|
102 |
+
# Loads the weights
|
103 |
+
model.load_weights(file_path)
|
104 |
+
else:
|
105 |
+
st.warning(f"Weights file for {ticker} not found.")
|
106 |
|
107 |
# Step 4: Make predictions
|
108 |
preds = model.predict(X_test)
|
|
|
120 |
|
121 |
fig = px.line(x=model_data.index[-len(y_test):],
|
122 |
y=[y_test.flatten(), preds.flatten()])
|
123 |
+
newnames = {'wide_variable_0': 'Real Values', 'wide_variable_1': 'Predictions'}
|
124 |
+
fig.for_each_trace(lambda t: t.update(name=newnames[t.name],
|
125 |
+
legendgroup=newnames[t.name],
|
126 |
+
hovertemplate=t.hovertemplate.replace(t.name, newnames[t.name])))
|
127 |
fig.update_layout(
|
128 |
xaxis_title="Date",
|
129 |
+
yaxis_title=ticker + " Price",
|
130 |
legend_title=" ")
|
131 |
st.write(fig)
|
132 |
|
|
|
135 |
about_data, news = st.tabs(["About", "News"])
|
136 |
|
137 |
with about_data:
|
138 |
+
# Candlestick
|
139 |
+
raw_data = ticker_obj.history(start=start_date, end=end_date)
|
140 |
+
fig = go.Figure(data=[go.Candlestick(x=raw_data.index,
|
141 |
+
open=raw_data['Open'],
|
142 |
+
high=raw_data['High'],
|
143 |
+
low=raw_data['Low'],
|
144 |
+
close=raw_data['Close'])])
|
145 |
+
fig.update_layout(
|
146 |
+
title=ticker + " candlestick : Open, High, Low and Close",
|
147 |
+
yaxis_title=ticker + ' Price')
|
148 |
+
st.plotly_chart(fig)
|
149 |
+
|
150 |
+
# Table
|
151 |
+
history_data = raw_data.copy()
|
152 |
+
|
153 |
+
# Formating index Date
|
154 |
+
history_data.index = pd.to_datetime(history_data.index, format='%Y-%m-%d %H:%M:%S').date
|
155 |
+
history_data.index.name = "Date"
|
156 |
+
history_data.sort_values(by='Date', ascending=False, inplace=True)
|
157 |
+
st.write(history_data)
|
158 |
|
159 |
with news:
|
160 |
+
sNews = StockNews(ticker, save_news=False)
|
161 |
+
sNews_df = sNews.read_rss()
|
162 |
+
|
163 |
+
# Showing most recent news
|
164 |
+
for i in range(10):
|
165 |
+
st.subheader(f"{i+1} - {sNews_df['title'][i]}")
|
166 |
+
st.write(sNews_df['summary'][i])
|
167 |
+
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
|
168 |
+
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")
|