Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,15 +12,12 @@ from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM
|
|
12 |
from datetime import date, datetime, timedelta
|
13 |
from stocknews import StockNews
|
14 |
|
15 |
-
|
16 |
-
|
17 |
# --- SIDEBAR CODE
|
18 |
-
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD", "BNB-USD","XRP-USD","ADA-USD","DOT-USD","DOGE-USD","SOL-USD"])
|
19 |
|
20 |
start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365))
|
21 |
end_date = st.sidebar.date_input('End Date')
|
22 |
|
23 |
-
|
24 |
# --- MAIN PAGE
|
25 |
st.header('Cryptocurrency Prediction')
|
26 |
|
@@ -28,11 +25,10 @@ col1, col2, = st.columns([1,9])
|
|
28 |
with col1:
|
29 |
st.image('icons/'+ ticker +'.png', width=75)
|
30 |
with col2:
|
31 |
-
st.write(f" ## {
|
32 |
|
33 |
ticker_obj = yf.Ticker(ticker)
|
34 |
|
35 |
-
|
36 |
# --- CODE
|
37 |
|
38 |
model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date)
|
@@ -60,7 +56,6 @@ def build_lstm_model(input_data, output_size, neurons, activ_func='linear', drop
|
|
60 |
|
61 |
return model
|
62 |
|
63 |
-
|
64 |
# Hyperparameters
|
65 |
np.random.seed(245)
|
66 |
window_len = 10
|
@@ -83,7 +78,6 @@ def extract_window_data(input_data, target_data, window_len):
|
|
83 |
|
84 |
X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len)
|
85 |
|
86 |
-
|
87 |
# Split the data into training and testing sets
|
88 |
split_ratio = 0.8 # Ratio of training set to total data
|
89 |
split_index = int(split_ratio * len(X))
|
@@ -126,7 +120,6 @@ fig.update_layout(
|
|
126 |
legend_title=" ")
|
127 |
st.write(fig)
|
128 |
|
129 |
-
|
130 |
# --- INFO BUBBLE
|
131 |
|
132 |
about_data, news = st.tabs(["About", "News"])
|
@@ -153,7 +146,6 @@ with about_data:
|
|
153 |
history_data.sort_values(by='Date', ascending=False, inplace=True)
|
154 |
st.write(history_data)
|
155 |
|
156 |
-
|
157 |
with news:
|
158 |
sNews = StockNews(ticker, save_news=False)
|
159 |
sNews_df = sNews.read_rss()
|
@@ -163,4 +155,4 @@ with news:
|
|
163 |
st.subheader(f"{i+1} - {sNews_df['title'][i]}")
|
164 |
st.write(sNews_df['summary'][i])
|
165 |
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
|
166 |
-
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")
|
|
|
12 |
from datetime import date, datetime, timedelta
|
13 |
from stocknews import StockNews
|
14 |
|
|
|
|
|
15 |
# --- SIDEBAR CODE
|
16 |
+
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD", "BNB-USD", "XRP-USD", "ADA-USD", "DOT-USD", "DOGE-USD", "SOL-USD"])
|
17 |
|
18 |
start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365))
|
19 |
end_date = st.sidebar.date_input('End Date')
|
20 |
|
|
|
21 |
# --- MAIN PAGE
|
22 |
st.header('Cryptocurrency Prediction')
|
23 |
|
|
|
25 |
with col1:
|
26 |
st.image('icons/'+ ticker +'.png', width=75)
|
27 |
with col2:
|
28 |
+
st.write(f" ## {ticker}")
|
29 |
|
30 |
ticker_obj = yf.Ticker(ticker)
|
31 |
|
|
|
32 |
# --- CODE
|
33 |
|
34 |
model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date)
|
|
|
56 |
|
57 |
return model
|
58 |
|
|
|
59 |
# Hyperparameters
|
60 |
np.random.seed(245)
|
61 |
window_len = 10
|
|
|
78 |
|
79 |
X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len)
|
80 |
|
|
|
81 |
# Split the data into training and testing sets
|
82 |
split_ratio = 0.8 # Ratio of training set to total data
|
83 |
split_index = int(split_ratio * len(X))
|
|
|
120 |
legend_title=" ")
|
121 |
st.write(fig)
|
122 |
|
|
|
123 |
# --- INFO BUBBLE
|
124 |
|
125 |
about_data, news = st.tabs(["About", "News"])
|
|
|
146 |
history_data.sort_values(by='Date', ascending=False, inplace=True)
|
147 |
st.write(history_data)
|
148 |
|
|
|
149 |
with news:
|
150 |
sNews = StockNews(ticker, save_news=False)
|
151 |
sNews_df = sNews.read_rss()
|
|
|
155 |
st.subheader(f"{i+1} - {sNews_df['title'][i]}")
|
156 |
st.write(sNews_df['summary'][i])
|
157 |
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
|
158 |
+
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")
|