Spaces:
Sleeping
Sleeping
File size: 3,214 Bytes
e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd e2b9039 728abbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import os
import streamlit as st
from pinecone import Pinecone, ServerlessSpec
from sentence_transformers import SentenceTransformer
# Title of the Streamlit App
st.title("Pinecone Index Management with Streamlit")
# Function to initialize Pinecone
def initialize_pinecone():
api_key = os.getenv('PINECONE_API_KEY') # Get Pinecone API key from environment variable
if api_key:
# Initialize Pinecone client
pc = Pinecone(api_key=api_key)
return pc
else:
st.error("Pinecone API key not found! Please set the PINECONE_API_KEY environment variable.")
return None
# Function to create or connect to an index
def create_or_connect_index(pc, index_name, dimension):
if index_name not in pc.list_indexes().names():
# Create index if it doesn't exist
pc.create_index(
name=index_name,
dimension=dimension,
metric='dotproduct', # Change this based on your use case
spec=ServerlessSpec(cloud='aws', region='us-west-2') # Change to your cloud provider and region
)
st.success(f"Created new index '{index_name}'")
else:
st.info(f"Index '{index_name}' already exists.")
# Connect to the index
index = pc.Index(index_name)
return index
# Function to encode query using sentence transformers model
def encode_query(model, query_text):
return model.encode(query_text).tolist()
# Initialize Pinecone
pc = initialize_pinecone()
# If Pinecone initialized successfully, proceed with index management
if pc:
index_name = st.text_input("Enter Index Name", "my_index")
dimension = st.number_input("Enter Vector Dimension", min_value=1, value=768)
# Button to create or connect to index
if st.button("Create or Connect to Index"):
index = create_or_connect_index(pc, index_name, dimension)
if index:
st.success(f"Successfully connected to index '{index_name}'")
# Model for query encoding
model = SentenceTransformer('msmarco-bert-base-dot-v5')
# Query input
query_text = st.text_input("Enter a Query to Search", "Can clinicians use the PHQ-9 to assess depression?")
# Button to encode query and search the Pinecone index
if st.button("Search Query"):
if query_text and index:
dense_vector = encode_query(model, query_text)
st.write(f"Encoded Query Vector: {dense_vector}")
# Search the index (sparse values can be added here as well)
results = index.query(
vector=dense_vector,
top_k=5,
include_metadata=True
)
st.write("Search Results:")
for match in results.matches:
st.write(f"ID: {match.id}, Score: {match.score}, Metadata: {match.metadata}")
else:
st.error("Please enter a query and ensure the index is initialized.")
# Option to delete index
if st.button("Delete Index"):
if pc and index_name in pc.list_indexes().names():
pc.delete_index(index_name)
st.success(f"Index '{index_name}' deleted successfully.")
else:
st.error("Index not found.")
|