Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from splade.models.transformer_rep import Splade
|
7 |
+
import pinecone
|
8 |
+
|
9 |
+
# Initialize Pinecone connection
|
10 |
+
api_key = os.getenv('PINECONE_API_KEY', 'b250d1e1-fa69-40f7-81e7-442d53f62859')
|
11 |
+
pinecone.init(api_key=api_key, environment='us-east1-gcp')
|
12 |
+
index_name = 'pubmed-splade'
|
13 |
+
|
14 |
+
# Connect to the Pinecone index
|
15 |
+
if pinecone.list_indexes() and index_name in pinecone.list_indexes():
|
16 |
+
index = pinecone.Index(index_name)
|
17 |
+
else:
|
18 |
+
st.error("Pinecone index not found! Ensure the correct Pinecone index is being used.")
|
19 |
+
|
20 |
+
# Initialize Dense and Sparse models
|
21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
22 |
+
|
23 |
+
# Dense model (Sentence-BERT)
|
24 |
+
dense_model = SentenceTransformer('msmarco-bert-base-dot-v5', device=device)
|
25 |
+
|
26 |
+
# Sparse model (SPLADE)
|
27 |
+
sparse_model_id = 'naver/splade-cocondenser-ensembledistil'
|
28 |
+
sparse_model = Splade(sparse_model_id, agg='max').to(device)
|
29 |
+
sparse_model.eval()
|
30 |
+
|
31 |
+
# Tokenizer for sparse model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(sparse_model_id)
|
33 |
+
|
34 |
+
# Function to encode query into dense and sparse vectors
|
35 |
+
def encode(text: str):
|
36 |
+
# Dense vector
|
37 |
+
dense_vec = dense_model.encode(text).tolist()
|
38 |
+
|
39 |
+
# Sparse vector
|
40 |
+
input_ids = tokenizer(text, return_tensors='pt')
|
41 |
+
with torch.no_grad():
|
42 |
+
sparse_vec = sparse_model(d_kwargs=input_ids.to(device))['d_rep'].squeeze()
|
43 |
+
|
44 |
+
# Extract non-zero values and indices for sparse vector
|
45 |
+
indices = sparse_vec.nonzero().squeeze().cpu().tolist()
|
46 |
+
values = sparse_vec[indices].cpu().tolist()
|
47 |
+
|
48 |
+
sparse_dict = {"indices": indices, "values": values}
|
49 |
+
return dense_vec, sparse_dict
|
50 |
+
|
51 |
+
# Function for hybrid search scaling
|
52 |
+
def hybrid_scale(dense, sparse, alpha: float):
|
53 |
+
if alpha < 0 or alpha > 1:
|
54 |
+
raise ValueError("Alpha must be between 0 and 1")
|
55 |
+
|
56 |
+
hsparse = {
|
57 |
+
'indices': sparse['indices'],
|
58 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
59 |
+
}
|
60 |
+
hdense = [v * alpha for v in dense]
|
61 |
+
|
62 |
+
return hdense, hsparse
|
63 |
+
|
64 |
+
# Streamlit UI
|
65 |
+
st.title("PubMed Search Application")
|
66 |
+
query = st.text_input("Enter your query:", "")
|
67 |
+
|
68 |
+
# Slider to control sparse-dense scaling
|
69 |
+
alpha = st.slider("Hybrid Search Weight (Dense vs Sparse)", 0.0, 1.0, 0.5)
|
70 |
+
|
71 |
+
if query:
|
72 |
+
# Encode the query
|
73 |
+
dense_vec, sparse_vec = encode(query)
|
74 |
+
|
75 |
+
# Scale vectors based on slider value
|
76 |
+
hdense, hsparse = hybrid_scale(dense_vec, sparse_vec, alpha)
|
77 |
+
|
78 |
+
# Query Pinecone index
|
79 |
+
response = index.query(vector=hdense, sparse_vector=hsparse, top_k=3, include_metadata=True)
|
80 |
+
|
81 |
+
# Display results
|
82 |
+
st.write(f"Top results for query: **{query}**")
|
83 |
+
for match in response['matches']:
|
84 |
+
st.write(f"**Score**: {match['score']}")
|
85 |
+
st.write(f"**Context**: {match['metadata']['context']}")
|
86 |
+
st.write("---")
|