3v324v23's picture
code pushed
515f781
import fvcore.nn.weight_init as weight_init
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from .msdeformattn import PositionEmbeddingSine, _get_clones, _get_activation_fn
from lib.model_zoo.common.get_model import get_model, register
##########
# helper #
##########
def with_pos_embed(x, pos):
return x if pos is None else x + pos
##############
# One Former #
##############
class Transformer(nn.Module):
def __init__(self,
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
return_intermediate_dec=False,):
super().__init__()
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
decoder_layer = TransformerDecoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(
decoder_layer,
num_decoder_layers,
decoder_norm,
return_intermediate=return_intermediate_dec,)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, mask, query_embed, pos_embed, task_token=None):
# flatten NxCxHxW to HWxNxC
bs, c, h, w = src.shape
src = src.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
if mask is not None:
mask = mask.flatten(1)
if task_token is None:
tgt = torch.zeros_like(query_embed)
else:
tgt = task_token.repeat(query_embed.shape[0], 1, 1)
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) # src = memory
hs = self.decoder(
tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed
)
return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src, mask=None, src_key_padding_mask=None, pos=None,):
output = src
for layer in self.layers:
output = layer(
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos
)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(
self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
pos=None,
query_pos=None,):
output = tgt
intermediate = []
for layer in self.layers:
output = layer(
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos,
query_pos=query_pos,
)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output.unsqueeze(0)
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False, ):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, x, pos):
return x if pos is None else x + pos
def forward_post(
self,
src,
src_mask = None,
src_key_padding_mask = None,
pos = None,):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(
q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
def forward_pre(
self,
src,
src_mask = None,
src_key_padding_mask = None,
pos = None,):
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.self_attn(
q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
def forward(
self,
src,
src_mask = None,
src_key_padding_mask = None,
pos = None,):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
class TransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, x, pos):
return x if pos is None else x + pos
def forward_post(
self,
tgt,
memory,
tgt_mask = None,
memory_mask = None,
tgt_key_padding_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None,):
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(
query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(
self,
tgt,
memory,
tgt_mask = None,
memory_mask = None,
tgt_key_padding_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None,):
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
)[0]
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(
query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(
self,
tgt,
memory,
tgt_mask = None,
memory_mask = None,
tgt_key_padding_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None, ):
if self.normalize_before:
return self.forward_pre(
tgt,
memory,
tgt_mask,
memory_mask,
tgt_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,)
return self.forward_post(
tgt,
memory,
tgt_mask,
memory_mask,
tgt_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,)
class SelfAttentionLayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt,
tgt_mask = None,
tgt_key_padding_mask = None,
query_pos = None):
q = k = self.with_pos_embed(tgt, query_pos).transpose(0 ,1)
tgt2 = self.self_attn(q, k, value=tgt.transpose(0 ,1), attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2.transpose(0 ,1))
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt,
tgt_mask = None,
tgt_key_padding_mask = None,
query_pos = None):
tgt2 = self.norm(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt,
tgt_mask = None,
tgt_key_padding_mask = None,
query_pos = None):
if self.normalize_before:
return self.forward_pre(tgt, tgt_mask,
tgt_key_padding_mask, query_pos)
return self.forward_post(tgt, tgt_mask,
tgt_key_padding_mask, query_pos)
class CrossAttentionLayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt, memory,
memory_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None):
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos).transpose(0, 1),
key=self.with_pos_embed(memory, pos).transpose(0, 1),
value=memory.transpose(0, 1), attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2.transpose(0, 1))
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt, memory,
memory_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None):
tgt2 = self.norm(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt, memory,
memory_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None):
if self.normalize_before:
return self.forward_pre(tgt, memory, memory_mask,
memory_key_padding_mask, pos, query_pos)
return self.forward_post(tgt, memory, memory_mask,
memory_key_padding_mask, pos, query_pos)
class FFNLayer(nn.Module):
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm = nn.LayerNorm(d_model)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt):
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt):
tgt2 = self.norm(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt):
if self.normalize_before:
return self.forward_pre(tgt)
return self.forward_post(tgt)
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
@register('seet_oneformer_tdecoder')
class Seet_OneFormer_TDecoder(nn.Module):
def __init__(
self,
in_channels,
mask_classification,
num_classes,
hidden_dim,
num_queries,
nheads,
dropout,
dim_feedforward,
enc_layers,
is_train,
dec_layers,
class_dec_layers,
pre_norm,
mask_dim,
enforce_input_project,
use_task_norm,):
super().__init__()
assert mask_classification, "Only support mask classification model"
self.mask_classification = mask_classification
self.is_train = is_train
self.use_task_norm = use_task_norm
# positional encoding
N_steps = hidden_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
self.class_transformer = Transformer(
d_model=hidden_dim,
dropout=dropout,
nhead=nheads,
dim_feedforward=dim_feedforward,
num_encoder_layers=enc_layers,
num_decoder_layers=class_dec_layers,
normalize_before=pre_norm,
return_intermediate_dec=False,
)
# define Transformer decoder here
self.num_heads = nheads
self.num_layers = dec_layers
self.transformer_self_attention_layers = nn.ModuleList()
self.transformer_cross_attention_layers = nn.ModuleList()
self.transformer_ffn_layers = nn.ModuleList()
for _ in range(self.num_layers):
self.transformer_self_attention_layers.append(
SelfAttentionLayer(
d_model=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_cross_attention_layers.append(
CrossAttentionLayer(
d_model=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_ffn_layers.append(
FFNLayer(
d_model=hidden_dim,
dim_feedforward=dim_feedforward,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.decoder_norm = nn.LayerNorm(hidden_dim)
self.num_queries = num_queries
# learnable query p.e.
self.query_embed = nn.Embedding(num_queries, hidden_dim)
# level embedding (we always use 3 scales)
self.num_feature_levels = 3
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
self.input_proj = nn.ModuleList()
for _ in range(self.num_feature_levels):
if in_channels != hidden_dim or enforce_input_project:
self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1))
weight_init.c2_xavier_fill(self.input_proj[-1])
else:
self.input_proj.append(nn.Sequential())
self.class_input_proj = nn.Conv2d(in_channels, hidden_dim, kernel_size=1)
weight_init.c2_xavier_fill(self.class_input_proj)
# output FFNs
if self.mask_classification:
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
def forward(self, x, mask_features, tasks):
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
src = []
pos = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
pos.append(self.pe_layer(x[i], None).flatten(2))
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
pos[-1] = pos[-1].transpose(1, 2)
src[-1] = src[-1].transpose(1, 2)
bs, _, _ = src[0].shape
query_embed = self.query_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
tasks = tasks.unsqueeze(0)
if self.use_task_norm:
tasks = self.decoder_norm(tasks)
feats = self.pe_layer(mask_features, None)
out_t, _ = self.class_transformer(
feats, None,
self.query_embed.weight[:-1],
self.class_input_proj(mask_features),
tasks if self.use_task_norm else None)
out_t = out_t[0]
out = torch.cat([out_t, tasks], dim=1)
output = out.clone()
predictions_class = []
predictions_mask = []
# prediction heads on learnable query features
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(
output, mask_features, attn_mask_target_size=size_list[0])
predictions_class.append(outputs_class)
predictions_mask.append(outputs_mask)
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
output = self.transformer_cross_attention_layers[i](
output, src[level_index],
memory_mask=attn_mask,
memory_key_padding_mask=None,
pos=pos[level_index], query_pos=query_embed, )
output = self.transformer_self_attention_layers[i](
output, tgt_mask=None,
tgt_key_padding_mask=None,
query_pos=query_embed, )
# FFN
output = self.transformer_ffn_layers[i](output)
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(
output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
predictions_class.append(outputs_class)
predictions_mask.append(outputs_mask)
assert len(predictions_class) == self.num_layers + 1
out = {
'pred_logits': predictions_class[-1],
'pred_masks': predictions_mask[-1],}
return out
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size):
decoder_output = self.decoder_norm(output)
outputs_class = self.class_embed(decoder_output)
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
attn_mask = attn_mask.detach()
return outputs_class, outputs_mask, attn_mask