Spaces:
Runtime error
Runtime error
code pushed
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +1 -1
- app.py +494 -0
- configs/model/autokl.yaml +26 -0
- configs/model/clip.yaml +12 -0
- configs/model/controlnet.yaml +18 -0
- configs/model/openai_unet.yaml +35 -0
- configs/model/pfd.yaml +33 -0
- configs/model/seecoder.yaml +62 -0
- configs/model/swin.yaml +32 -0
- lib/__init__.py +0 -0
- lib/__pycache__/__init__.cpython-310.pyc +0 -0
- lib/__pycache__/cfg_helper.cpython-310.pyc +0 -0
- lib/__pycache__/cfg_holder.cpython-310.pyc +0 -0
- lib/__pycache__/log_service.cpython-310.pyc +0 -0
- lib/__pycache__/sync.cpython-310.pyc +0 -0
- lib/cfg_helper.py +666 -0
- lib/cfg_holder.py +28 -0
- lib/log_service.py +165 -0
- lib/model_zoo/__init__.py +4 -0
- lib/model_zoo/__pycache__/__init__.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/attention.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/autokl.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/autokl_modules.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/autokl_utils.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/controlnet.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/ddim.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/diffusion_utils.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/distributions.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/ema.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/openaimodel.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/pfd.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/seecoder.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/seecoder_utils.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/swin.cpython-310.pyc +0 -0
- lib/model_zoo/attention.py +540 -0
- lib/model_zoo/autokl.py +166 -0
- lib/model_zoo/autokl_modules.py +835 -0
- lib/model_zoo/autokl_utils.py +400 -0
- lib/model_zoo/clip.py +788 -0
- lib/model_zoo/common/__pycache__/get_model.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/get_optimizer.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/get_scheduler.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/utils.cpython-310.pyc +0 -0
- lib/model_zoo/common/get_model.py +124 -0
- lib/model_zoo/common/get_optimizer.py +47 -0
- lib/model_zoo/common/get_scheduler.py +262 -0
- lib/model_zoo/common/utils.py +292 -0
- lib/model_zoo/controlnet.py +503 -0
- lib/model_zoo/controlnet_annotator/canny/__init__.py +5 -0
- lib/model_zoo/controlnet_annotator/hed/__init__.py +134 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Prompt-Free Diffusion
|
3 |
emoji: 👀
|
4 |
-
colorFrom:
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.32.0
|
|
|
1 |
---
|
2 |
title: Prompt-Free Diffusion
|
3 |
emoji: 👀
|
4 |
+
colorFrom: red
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.32.0
|
app.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
################################################################################
|
2 |
+
# Copyright (C) 2023 Xingqian Xu - All Rights Reserved #
|
3 |
+
# #
|
4 |
+
# Please visit Prompt-Free-Diffusion's arXiv paper for more details, link at #
|
5 |
+
# arxiv.org/abs/2305.16223 #
|
6 |
+
# #
|
7 |
+
################################################################################
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import os.path as osp
|
11 |
+
from PIL import Image
|
12 |
+
import numpy as np
|
13 |
+
import time
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torchvision.transforms as tvtrans
|
17 |
+
from lib.cfg_helper import model_cfg_bank
|
18 |
+
from lib.model_zoo import get_model
|
19 |
+
|
20 |
+
from collections import OrderedDict
|
21 |
+
from lib.model_zoo.ddim import DDIMSampler
|
22 |
+
|
23 |
+
n_sample_image = 1
|
24 |
+
|
25 |
+
controlnet_path = OrderedDict([
|
26 |
+
['canny' , ('canny' , 'pretrained/controlnet/control_sd15_canny_slimmed.safetensors')],
|
27 |
+
['canny_v11p' , ('canny' , 'pretrained/controlnet/control_v11p_sd15_canny_slimmed.safetensors')],
|
28 |
+
['depth' , ('depth' , 'pretrained/controlnet/control_sd15_depth_slimmed.safetensors')],
|
29 |
+
['hed' , ('hed' , 'pretrained/controlnet/control_sd15_hed_slimmed.safetensors')],
|
30 |
+
['mlsd' , ('mlsd' , 'pretrained/controlnet/control_sd15_mlsd_slimmed.safetensors')],
|
31 |
+
['mlsd_v11p' , ('mlsd' , 'pretrained/controlnet/control_v11p_sd15_mlsd_slimmed.safetensors')],
|
32 |
+
['normal' , ('normal' , 'pretrained/controlnet/control_sd15_normal_slimmed.safetensors')],
|
33 |
+
['openpose' , ('openpose', 'pretrained/controlnet/control_sd15_openpose_slimmed.safetensors')],
|
34 |
+
['openpose_v11p' , ('openpose', 'pretrained/controlnet/control_v11p_sd15_openpose_slimmed.safetensors')],
|
35 |
+
['scribble' , ('scribble', 'pretrained/controlnet/control_sd15_scribble_slimmed.safetensors')],
|
36 |
+
['softedge_v11p' , ('scribble', 'pretrained/controlnet/control_v11p_sd15_softedge_slimmed.safetensors')],
|
37 |
+
['seg' , ('none' , 'pretrained/controlnet/control_sd15_seg_slimmed.safetensors')],
|
38 |
+
['lineart_v11p' , ('none' , 'pretrained/controlnet/control_v11p_sd15_lineart_slimmed.safetensors')],
|
39 |
+
['lineart_anime_v11p', ('none' , 'pretrained/controlnet/control_v11p_sd15s2_lineart_anime_slimmed.safetensors')],
|
40 |
+
])
|
41 |
+
|
42 |
+
preprocess_method = [
|
43 |
+
'canny' ,
|
44 |
+
'depth' ,
|
45 |
+
'hed' ,
|
46 |
+
'mlsd' ,
|
47 |
+
'normal' ,
|
48 |
+
'openpose' ,
|
49 |
+
'openpose_withface' ,
|
50 |
+
'openpose_withfacehand',
|
51 |
+
'scribble' ,
|
52 |
+
'none' ,
|
53 |
+
]
|
54 |
+
|
55 |
+
diffuser_path = OrderedDict([
|
56 |
+
['SD-v1.5' , 'pretrained/pfd/diffuser/SD-v1-5.safetensors'],
|
57 |
+
['OpenJouney-v4' , 'pretrained/pfd/diffuser/OpenJouney-v4.safetensors'],
|
58 |
+
['Deliberate-v2.0' , 'pretrained/pfd/diffuser/Deliberate-v2-0.safetensors'],
|
59 |
+
['RealisticVision-v2.0', 'pretrained/pfd/diffuser/RealisticVision-v2-0.safetensors'],
|
60 |
+
['Anything-v4' , 'pretrained/pfd/diffuser/Anything-v4.safetensors'],
|
61 |
+
['Oam-v3' , 'pretrained/pfd/diffuser/AbyssOrangeMix-v3.safetensors'],
|
62 |
+
['Oam-v2' , 'pretrained/pfd/diffuser/AbyssOrangeMix-v2.safetensors'],
|
63 |
+
])
|
64 |
+
|
65 |
+
ctxencoder_path = OrderedDict([
|
66 |
+
['SeeCoder' , 'pretrained/pfd/seecoder/seecoder-v1-0.safetensors'],
|
67 |
+
['SeeCoder-PA' , 'pretrained/pfd/seecoder/seecoder-pa-v1-0.safetensors'],
|
68 |
+
['SeeCoder-Anime', 'pretrained/pfd/seecoder/seecoder-anime-v1-0.safetensors'],
|
69 |
+
])
|
70 |
+
|
71 |
+
##########
|
72 |
+
# helper #
|
73 |
+
##########
|
74 |
+
|
75 |
+
def highlight_print(info):
|
76 |
+
print('')
|
77 |
+
print(''.join(['#']*(len(info)+4)))
|
78 |
+
print('# '+info+' #')
|
79 |
+
print(''.join(['#']*(len(info)+4)))
|
80 |
+
print('')
|
81 |
+
|
82 |
+
def load_sd_from_file(target):
|
83 |
+
if osp.splitext(target)[-1] == '.ckpt':
|
84 |
+
sd = torch.load(target, map_location='cpu')['state_dict']
|
85 |
+
elif osp.splitext(target)[-1] == '.pth':
|
86 |
+
sd = torch.load(target, map_location='cpu')
|
87 |
+
elif osp.splitext(target)[-1] == '.safetensors':
|
88 |
+
from safetensors.torch import load_file as stload
|
89 |
+
sd = OrderedDict(stload(target, device='cpu'))
|
90 |
+
else:
|
91 |
+
assert False, "File type must be .ckpt or .pth or .safetensors"
|
92 |
+
return sd
|
93 |
+
|
94 |
+
########
|
95 |
+
# main #
|
96 |
+
########
|
97 |
+
|
98 |
+
class prompt_free_diffusion(object):
|
99 |
+
def __init__(self,
|
100 |
+
fp16=False,
|
101 |
+
tag_ctx=None,
|
102 |
+
tag_diffuser=None,
|
103 |
+
tag_ctl=None,):
|
104 |
+
|
105 |
+
self.tag_ctx = tag_ctx
|
106 |
+
self.tag_diffuser = tag_diffuser
|
107 |
+
self.tag_ctl = tag_ctl
|
108 |
+
self.strict_sd = True
|
109 |
+
|
110 |
+
cfgm = model_cfg_bank()('pfd_seecoder_with_controlnet')
|
111 |
+
self.net = get_model()(cfgm)
|
112 |
+
|
113 |
+
self.action_load_ctx(tag_ctx)
|
114 |
+
self.action_load_diffuser(tag_diffuser)
|
115 |
+
self.action_load_ctl(tag_ctl)
|
116 |
+
|
117 |
+
if fp16:
|
118 |
+
highlight_print('Running in FP16')
|
119 |
+
self.net.ctx['image'].fp16 = True
|
120 |
+
self.net = self.net.half()
|
121 |
+
self.dtype = torch.float16
|
122 |
+
else:
|
123 |
+
self.dtype = torch.float32
|
124 |
+
|
125 |
+
self.use_cuda = torch.cuda.is_available()
|
126 |
+
if self.use_cuda:
|
127 |
+
self.net.to('cuda')
|
128 |
+
|
129 |
+
self.net.eval()
|
130 |
+
self.sampler = DDIMSampler(self.net)
|
131 |
+
|
132 |
+
self.n_sample_image = n_sample_image
|
133 |
+
self.ddim_steps = 50
|
134 |
+
self.ddim_eta = 0.0
|
135 |
+
self.image_latent_dim = 4
|
136 |
+
|
137 |
+
def load_ctx(self, pretrained):
|
138 |
+
sd = load_sd_from_file(pretrained)
|
139 |
+
sd_extra = [(ki, vi) for ki, vi in self.net.state_dict().items() \
|
140 |
+
if ki.find('ctx.')!=0]
|
141 |
+
sd.update(OrderedDict(sd_extra))
|
142 |
+
|
143 |
+
self.net.load_state_dict(sd, strict=True)
|
144 |
+
print('Load context encoder from [{}] strict [{}].'.format(pretrained, True))
|
145 |
+
|
146 |
+
def load_diffuser(self, pretrained):
|
147 |
+
sd = load_sd_from_file(pretrained)
|
148 |
+
if len([ki for ki in sd.keys() if ki.find('diffuser.image.context_blocks.')==0]) == 0:
|
149 |
+
sd = [(
|
150 |
+
ki.replace('diffuser.text.context_blocks.', 'diffuser.image.context_blocks.'), vi)
|
151 |
+
for ki, vi in sd.items()]
|
152 |
+
sd = OrderedDict(sd)
|
153 |
+
sd_extra = [(ki, vi) for ki, vi in self.net.state_dict().items() \
|
154 |
+
if ki.find('diffuser.')!=0]
|
155 |
+
sd.update(OrderedDict(sd_extra))
|
156 |
+
self.net.load_state_dict(sd, strict=True)
|
157 |
+
print('Load diffuser from [{}] strict [{}].'.format(pretrained, True))
|
158 |
+
|
159 |
+
def load_ctl(self, pretrained):
|
160 |
+
sd = load_sd_from_file(pretrained)
|
161 |
+
self.net.ctl.load_state_dict(sd, strict=True)
|
162 |
+
print('Load controlnet from [{}] strict [{}].'.format(pretrained, True))
|
163 |
+
|
164 |
+
def action_load_ctx(self, tag):
|
165 |
+
pretrained = ctxencoder_path[tag]
|
166 |
+
if tag == 'SeeCoder-PA':
|
167 |
+
from lib.model_zoo.seecoder import PPE_MLP
|
168 |
+
pe_layer = \
|
169 |
+
PPE_MLP(freq_num=20, freq_max=None, out_channel=768, mlp_layer=3)
|
170 |
+
if self.dtype == torch.float16:
|
171 |
+
pe_layer = pe_layer.half()
|
172 |
+
if self.use_cuda:
|
173 |
+
pe_layer.to('cuda')
|
174 |
+
pe_layer.eval()
|
175 |
+
self.net.ctx['image'].qtransformer.pe_layer = pe_layer
|
176 |
+
else:
|
177 |
+
self.net.ctx['image'].qtransformer.pe_layer = None
|
178 |
+
if pretrained is not None:
|
179 |
+
self.load_ctx(pretrained)
|
180 |
+
self.tag_ctx = tag
|
181 |
+
return tag
|
182 |
+
|
183 |
+
def action_load_diffuser(self, tag):
|
184 |
+
pretrained = diffuser_path[tag]
|
185 |
+
if pretrained is not None:
|
186 |
+
self.load_diffuser(pretrained)
|
187 |
+
self.tag_diffuser = tag
|
188 |
+
return tag
|
189 |
+
|
190 |
+
def action_load_ctl(self, tag):
|
191 |
+
pretrained = controlnet_path[tag][1]
|
192 |
+
if pretrained is not None:
|
193 |
+
self.load_ctl(pretrained)
|
194 |
+
self.tag_ctl = tag
|
195 |
+
return tag
|
196 |
+
|
197 |
+
def action_autoset_hw(self, imctl):
|
198 |
+
if imctl is None:
|
199 |
+
return 512, 512
|
200 |
+
w, h = imctl.size
|
201 |
+
w = w//64 * 64
|
202 |
+
h = h//64 * 64
|
203 |
+
w = w if w >=512 else 512
|
204 |
+
w = w if w <=1536 else 1536
|
205 |
+
h = h if h >=512 else 512
|
206 |
+
h = h if h <=1536 else 1536
|
207 |
+
return h, w
|
208 |
+
|
209 |
+
def action_autoset_method(self, tag):
|
210 |
+
return controlnet_path[tag][0]
|
211 |
+
|
212 |
+
def action_inference(
|
213 |
+
self, im, imctl, ctl_method, do_preprocess,
|
214 |
+
h, w, ugscale, seed,
|
215 |
+
tag_ctx, tag_diffuser, tag_ctl,):
|
216 |
+
|
217 |
+
if tag_ctx != self.tag_ctx:
|
218 |
+
self.action_load_ctx(tag_ctx)
|
219 |
+
if tag_diffuser != self.tag_diffuser:
|
220 |
+
self.action_load_diffuser(tag_diffuser)
|
221 |
+
if tag_ctl != self.tag_ctl:
|
222 |
+
self.action_load_ctl(tag_ctl)
|
223 |
+
|
224 |
+
n_samples = self.n_sample_image
|
225 |
+
|
226 |
+
sampler = self.sampler
|
227 |
+
device = self.net.device
|
228 |
+
|
229 |
+
w = w//64 * 64
|
230 |
+
h = h//64 * 64
|
231 |
+
if imctl is not None:
|
232 |
+
imctl = imctl.resize([w, h], Image.Resampling.BICUBIC)
|
233 |
+
|
234 |
+
craw = tvtrans.ToTensor()(im)[None].to(device).to(self.dtype)
|
235 |
+
c = self.net.ctx_encode(craw, which='image').repeat(n_samples, 1, 1)
|
236 |
+
u = torch.zeros_like(c)
|
237 |
+
|
238 |
+
if tag_ctx in ["SeeCoder-Anime"]:
|
239 |
+
u = torch.load('assets/anime_ug.pth')[None].to(device).to(self.dtype)
|
240 |
+
pad = c.size(1) - u.size(1)
|
241 |
+
u = torch.cat([u, torch.zeros_like(u[:, 0:1].repeat(1, pad, 1))], axis=1)
|
242 |
+
|
243 |
+
if tag_ctl != 'none':
|
244 |
+
ccraw = tvtrans.ToTensor()(imctl)[None].to(device).to(self.dtype)
|
245 |
+
if do_preprocess:
|
246 |
+
cc = self.net.ctl.preprocess(ccraw, type=ctl_method, size=[h, w])
|
247 |
+
cc = cc.to(self.dtype)
|
248 |
+
else:
|
249 |
+
cc = ccraw
|
250 |
+
else:
|
251 |
+
cc = None
|
252 |
+
|
253 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
254 |
+
|
255 |
+
if seed < 0:
|
256 |
+
np.random.seed(int(time.time()))
|
257 |
+
torch.manual_seed(-seed + 100)
|
258 |
+
else:
|
259 |
+
np.random.seed(seed + 100)
|
260 |
+
torch.manual_seed(seed)
|
261 |
+
|
262 |
+
x, _ = sampler.sample(
|
263 |
+
steps=self.ddim_steps,
|
264 |
+
x_info={'type':'image',},
|
265 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
266 |
+
'unconditional_guidance_scale':ugscale,
|
267 |
+
'control':cc,},
|
268 |
+
shape=shape,
|
269 |
+
verbose=False,
|
270 |
+
eta=self.ddim_eta)
|
271 |
+
|
272 |
+
ccout = [tvtrans.ToPILImage()(i) for i in cc] if cc is not None else []
|
273 |
+
imout = self.net.vae_decode(x, which='image')
|
274 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
275 |
+
return imout + ccout
|
276 |
+
|
277 |
+
pfd_inference = prompt_free_diffusion(
|
278 |
+
fp16=True, tag_ctx = 'SeeCoder', tag_diffuser = 'Deliberate-v2.0', tag_ctl = 'canny',)
|
279 |
+
|
280 |
+
#################
|
281 |
+
# sub interface #
|
282 |
+
#################
|
283 |
+
|
284 |
+
cache_examples = True
|
285 |
+
|
286 |
+
def get_example():
|
287 |
+
case = [
|
288 |
+
[
|
289 |
+
'assets/examples/ghibli-input.jpg',
|
290 |
+
'assets/examples/ghibli-canny.png',
|
291 |
+
'canny', False,
|
292 |
+
768, 1024, 1.8, 23,
|
293 |
+
'SeeCoder', 'Deliberate-v2.0', 'canny', ],
|
294 |
+
[
|
295 |
+
'assets/examples/astronautridinghouse-input.jpg',
|
296 |
+
'assets/examples/astronautridinghouse-canny.png',
|
297 |
+
'canny', False,
|
298 |
+
512, 768, 2.0, 21,
|
299 |
+
'SeeCoder', 'Deliberate-v2.0', 'canny', ],
|
300 |
+
[
|
301 |
+
'assets/examples/grassland-input.jpg',
|
302 |
+
'assets/examples/grassland-scribble.png',
|
303 |
+
'scribble', False,
|
304 |
+
768, 512, 2.0, 41,
|
305 |
+
'SeeCoder', 'Deliberate-v2.0', 'scribble', ],
|
306 |
+
[
|
307 |
+
'assets/examples/jeep-input.jpg',
|
308 |
+
'assets/examples/jeep-depth.png',
|
309 |
+
'depth', False,
|
310 |
+
512, 768, 2.0, 30,
|
311 |
+
'SeeCoder', 'Deliberate-v2.0', 'depth', ],
|
312 |
+
[
|
313 |
+
'assets/examples/bedroom-input.jpg',
|
314 |
+
'assets/examples/bedroom-mlsd.png',
|
315 |
+
'mlsd', False,
|
316 |
+
512, 512, 2.0, 31,
|
317 |
+
'SeeCoder', 'Deliberate-v2.0', 'mlsd', ],
|
318 |
+
[
|
319 |
+
'assets/examples/nightstreet-input.jpg',
|
320 |
+
'assets/examples/nightstreet-canny.png',
|
321 |
+
'canny', False,
|
322 |
+
768, 512, 2.3, 20,
|
323 |
+
'SeeCoder', 'Deliberate-v2.0', 'canny', ],
|
324 |
+
[
|
325 |
+
'assets/examples/woodcar-input.jpg',
|
326 |
+
'assets/examples/woodcar-depth.png',
|
327 |
+
'depth', False,
|
328 |
+
768, 512, 2.0, 20,
|
329 |
+
'SeeCoder', 'Deliberate-v2.0', 'depth', ],
|
330 |
+
[
|
331 |
+
'assets/examples-anime/miku.jpg',
|
332 |
+
'assets/examples-anime/miku-canny.png',
|
333 |
+
'canny', False,
|
334 |
+
768, 576, 1.5, 22,
|
335 |
+
'SeeCoder-Anime', 'Anything-v4', 'canny', ],
|
336 |
+
[
|
337 |
+
'assets/examples-anime/random0.jpg',
|
338 |
+
'assets/examples-anime/pose.png',
|
339 |
+
'openpose', False,
|
340 |
+
768, 1536, 2.0, 41,
|
341 |
+
'SeeCoder-Anime', 'Oam-v2', 'openpose_v11p', ],
|
342 |
+
[
|
343 |
+
'assets/examples-anime/random1.jpg',
|
344 |
+
'assets/examples-anime/pose.png',
|
345 |
+
'openpose', False,
|
346 |
+
768, 1536, 2.5, 28,
|
347 |
+
'SeeCoder-Anime', 'Oam-v2', 'openpose_v11p', ],
|
348 |
+
[
|
349 |
+
'assets/examples-anime/camping.jpg',
|
350 |
+
'assets/examples-anime/pose.png',
|
351 |
+
'openpose', False,
|
352 |
+
768, 1536, 2.0, 35,
|
353 |
+
'SeeCoder-Anime', 'Anything-v4', 'openpose_v11p', ],
|
354 |
+
[
|
355 |
+
'assets/examples-anime/hanfu_girl.jpg',
|
356 |
+
'assets/examples-anime/pose.png',
|
357 |
+
'openpose', False,
|
358 |
+
768, 1536, 2.0, 20,
|
359 |
+
'SeeCoder-Anime', 'Anything-v4', 'openpose_v11p', ],
|
360 |
+
]
|
361 |
+
return case
|
362 |
+
|
363 |
+
def interface():
|
364 |
+
with gr.Row():
|
365 |
+
with gr.Column():
|
366 |
+
img_input = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
367 |
+
with gr.Row():
|
368 |
+
out_width = gr.Slider(label="Width" , minimum=512, maximum=1536, value=512, step=64, visible=True)
|
369 |
+
out_height = gr.Slider(label="Height", minimum=512, maximum=1536, value=512, step=64, visible=True)
|
370 |
+
with gr.Row():
|
371 |
+
scl_lvl = gr.Slider(label="CFGScale", minimum=0, maximum=10, value=2, step=0.01, visible=True)
|
372 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
373 |
+
with gr.Row():
|
374 |
+
tag_ctx = gr.Dropdown(label='Context Encoder', choices=[pi for pi in ctxencoder_path.keys()], value='SeeCoder')
|
375 |
+
tag_diffuser = gr.Dropdown(label='Diffuser', choices=[pi for pi in diffuser_path.keys()], value='Deliberate-v2.0')
|
376 |
+
button = gr.Button("Run")
|
377 |
+
with gr.Column():
|
378 |
+
ctl_input = gr.Image(label='Control Input', type='pil', elem_id='customized_imbox')
|
379 |
+
do_preprocess = gr.Checkbox(label='Preprocess', value=False)
|
380 |
+
with gr.Row():
|
381 |
+
ctl_method = gr.Dropdown(label='Preprocess Type', choices=preprocess_method, value='canny')
|
382 |
+
tag_ctl = gr.Dropdown(label='ControlNet', choices=[pi for pi in controlnet_path.keys()], value='canny')
|
383 |
+
with gr.Column():
|
384 |
+
img_output = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image+1)
|
385 |
+
|
386 |
+
tag_ctl.change(
|
387 |
+
pfd_inference.action_autoset_method,
|
388 |
+
inputs = [tag_ctl],
|
389 |
+
outputs = [ctl_method],)
|
390 |
+
|
391 |
+
ctl_input.change(
|
392 |
+
pfd_inference.action_autoset_hw,
|
393 |
+
inputs = [ctl_input],
|
394 |
+
outputs = [out_height, out_width],)
|
395 |
+
|
396 |
+
# tag_ctx.change(
|
397 |
+
# pfd_inference.action_load_ctx,
|
398 |
+
# inputs = [tag_ctx],
|
399 |
+
# outputs = [tag_ctx],)
|
400 |
+
|
401 |
+
# tag_diffuser.change(
|
402 |
+
# pfd_inference.action_load_diffuser,
|
403 |
+
# inputs = [tag_diffuser],
|
404 |
+
# outputs = [tag_diffuser],)
|
405 |
+
|
406 |
+
# tag_ctl.change(
|
407 |
+
# pfd_inference.action_load_ctl,
|
408 |
+
# inputs = [tag_ctl],
|
409 |
+
# outputs = [tag_ctl],)
|
410 |
+
|
411 |
+
button.click(
|
412 |
+
pfd_inference.action_inference,
|
413 |
+
inputs=[img_input, ctl_input, ctl_method, do_preprocess,
|
414 |
+
out_height, out_width, scl_lvl, seed,
|
415 |
+
tag_ctx, tag_diffuser, tag_ctl, ],
|
416 |
+
outputs=[img_output])
|
417 |
+
|
418 |
+
gr.Examples(
|
419 |
+
label='Examples',
|
420 |
+
examples=get_example(),
|
421 |
+
fn=pfd_inference.action_inference,
|
422 |
+
inputs=[img_input, ctl_input, ctl_method, do_preprocess,
|
423 |
+
out_height, out_width, scl_lvl, seed,
|
424 |
+
tag_ctx, tag_diffuser, tag_ctl, ],
|
425 |
+
outputs=[img_output],
|
426 |
+
cache_examples=cache_examples,)
|
427 |
+
|
428 |
+
#############
|
429 |
+
# Interface #
|
430 |
+
#############
|
431 |
+
|
432 |
+
css = """
|
433 |
+
#customized_imbox {
|
434 |
+
min-height: 450px;
|
435 |
+
}
|
436 |
+
#customized_imbox>div[data-testid="image"] {
|
437 |
+
min-height: 450px;
|
438 |
+
}
|
439 |
+
#customized_imbox>div[data-testid="image"]>div {
|
440 |
+
min-height: 450px;
|
441 |
+
}
|
442 |
+
#customized_imbox>div[data-testid="image"]>iframe {
|
443 |
+
min-height: 450px;
|
444 |
+
}
|
445 |
+
#customized_imbox>div.unpadded_box {
|
446 |
+
min-height: 450px;
|
447 |
+
}
|
448 |
+
#myinst {
|
449 |
+
font-size: 0.8rem;
|
450 |
+
margin: 0rem;
|
451 |
+
color: #6B7280;
|
452 |
+
}
|
453 |
+
#maskinst {
|
454 |
+
text-align: justify;
|
455 |
+
min-width: 1200px;
|
456 |
+
}
|
457 |
+
#maskinst>img {
|
458 |
+
min-width:399px;
|
459 |
+
max-width:450px;
|
460 |
+
vertical-align: top;
|
461 |
+
display: inline-block;
|
462 |
+
}
|
463 |
+
#maskinst:after {
|
464 |
+
content: "";
|
465 |
+
width: 100%;
|
466 |
+
display: inline-block;
|
467 |
+
}
|
468 |
+
"""
|
469 |
+
|
470 |
+
if True:
|
471 |
+
with gr.Blocks(css=css) as demo:
|
472 |
+
gr.HTML(
|
473 |
+
"""
|
474 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
475 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
476 |
+
Prompt-Free Diffusion
|
477 |
+
</h1>
|
478 |
+
</div>
|
479 |
+
""")
|
480 |
+
|
481 |
+
interface()
|
482 |
+
|
483 |
+
# gr.HTML(
|
484 |
+
# """
|
485 |
+
# <div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
|
486 |
+
# <h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
487 |
+
# <b>Version</b>: {}
|
488 |
+
# </h3>
|
489 |
+
# </div>
|
490 |
+
# """.format(' '+str(pfd_inference.pretrained)))
|
491 |
+
|
492 |
+
# demo.launch(server_name="0.0.0.0", server_port=7992)
|
493 |
+
# demo.launch()
|
494 |
+
demo.launch(debug=True)
|
configs/model/autokl.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
autokl:
|
2 |
+
symbol: autokl
|
3 |
+
find_unused_parameters: false
|
4 |
+
|
5 |
+
autokl_v1:
|
6 |
+
super_cfg: autokl
|
7 |
+
type: autoencoderkl
|
8 |
+
args:
|
9 |
+
embed_dim: 4
|
10 |
+
ddconfig:
|
11 |
+
double_z: true
|
12 |
+
z_channels: 4
|
13 |
+
resolution: 256
|
14 |
+
in_channels: 3
|
15 |
+
out_ch: 3
|
16 |
+
ch: 128
|
17 |
+
ch_mult: [1, 2, 4, 4]
|
18 |
+
num_res_blocks: 2
|
19 |
+
attn_resolutions: []
|
20 |
+
dropout: 0.0
|
21 |
+
lossconfig: null
|
22 |
+
pth: pretrained/kl-f8.pth
|
23 |
+
|
24 |
+
autokl_v2:
|
25 |
+
super_cfg: autokl_v1
|
26 |
+
pth: pretrained/pfd/vae/sd-v2-0-base-autokl.pth
|
configs/model/clip.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
################
|
2 |
+
# clip for sd1 #
|
3 |
+
################
|
4 |
+
|
5 |
+
clip:
|
6 |
+
symbol: clip
|
7 |
+
args: {}
|
8 |
+
|
9 |
+
clip_text_context_encoder_sdv1:
|
10 |
+
super_cfg: clip
|
11 |
+
type: clip_text_context_encoder_sdv1
|
12 |
+
args: {}
|
configs/model/controlnet.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
controlnet:
|
2 |
+
symbol: controlnet
|
3 |
+
type: controlnet
|
4 |
+
find_unused_parameters: false
|
5 |
+
args:
|
6 |
+
image_size: 32 # unused
|
7 |
+
in_channels: 4
|
8 |
+
hint_channels: 3
|
9 |
+
model_channels: 320
|
10 |
+
attention_resolutions: [ 4, 2, 1 ]
|
11 |
+
num_res_blocks: 2
|
12 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
13 |
+
num_heads: 8
|
14 |
+
use_spatial_transformer: True
|
15 |
+
transformer_depth: 1
|
16 |
+
context_dim: 768
|
17 |
+
use_checkpoint: True
|
18 |
+
legacy: False
|
configs/model/openai_unet.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai_unet_sd:
|
2 |
+
type: openai_unet
|
3 |
+
args:
|
4 |
+
image_size: null # no use
|
5 |
+
in_channels: 4
|
6 |
+
out_channels: 4
|
7 |
+
model_channels: 320
|
8 |
+
attention_resolutions: [ 4, 2, 1 ]
|
9 |
+
num_res_blocks: [ 2, 2, 2, 2 ]
|
10 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
11 |
+
# disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
|
12 |
+
num_heads: 8
|
13 |
+
use_spatial_transformer: True
|
14 |
+
transformer_depth: 1
|
15 |
+
context_dim: 768
|
16 |
+
use_checkpoint: True
|
17 |
+
legacy: False
|
18 |
+
|
19 |
+
#########
|
20 |
+
# v1 2d #
|
21 |
+
#########
|
22 |
+
|
23 |
+
openai_unet_2d_v1:
|
24 |
+
type: openai_unet_2d_next
|
25 |
+
args:
|
26 |
+
in_channels: 4
|
27 |
+
out_channels: 4
|
28 |
+
model_channels: 320
|
29 |
+
attention_resolutions: [ 4, 2, 1 ]
|
30 |
+
num_res_blocks: [ 2, 2, 2, 2 ]
|
31 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
32 |
+
num_heads: 8
|
33 |
+
context_dim: 768
|
34 |
+
use_checkpoint: False
|
35 |
+
parts: [global, data, context]
|
configs/model/pfd.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pfd_base:
|
2 |
+
symbol: pfd
|
3 |
+
find_unused_parameters: true
|
4 |
+
type: pfd
|
5 |
+
args:
|
6 |
+
beta_linear_start: 0.00085
|
7 |
+
beta_linear_end: 0.012
|
8 |
+
timesteps: 1000
|
9 |
+
use_ema: false
|
10 |
+
|
11 |
+
pfd_seecoder:
|
12 |
+
super_cfg: pfd_base
|
13 |
+
args:
|
14 |
+
vae_cfg_list:
|
15 |
+
- [image, MODEL(autokl_v2)]
|
16 |
+
ctx_cfg_list:
|
17 |
+
- [image, MODEL(seecoder)]
|
18 |
+
diffuser_cfg_list:
|
19 |
+
- [image, MODEL(openai_unet_2d_v1)]
|
20 |
+
latent_scale_factor:
|
21 |
+
image: 0.18215
|
22 |
+
|
23 |
+
pdf_seecoder_pa:
|
24 |
+
super_cfg: pfd_seecoder
|
25 |
+
args:
|
26 |
+
ctx_cfg_list:
|
27 |
+
- [image, MODEL(seecoder_pa)]
|
28 |
+
|
29 |
+
pfd_seecoder_with_controlnet:
|
30 |
+
super_cfg: pfd_seecoder
|
31 |
+
type: pfd_with_control
|
32 |
+
args:
|
33 |
+
ctl_cfg: MODEL(controlnet)
|
configs/model/seecoder.yaml
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seecoder_base:
|
2 |
+
symbol: seecoder
|
3 |
+
args: {}
|
4 |
+
|
5 |
+
seecoder:
|
6 |
+
super_cfg: seecoder_base
|
7 |
+
type: seecoder
|
8 |
+
args:
|
9 |
+
imencoder_cfg : MODEL(swin_large)
|
10 |
+
imdecoder_cfg : MODEL(seecoder_decoder)
|
11 |
+
qtransformer_cfg : MODEL(seecoder_query_transformer)
|
12 |
+
|
13 |
+
seecoder_pa:
|
14 |
+
super_cfg: seet
|
15 |
+
type: seecoder
|
16 |
+
args:
|
17 |
+
imencoder_cfg : MODEL(swin_large)
|
18 |
+
imdecoder_cfg : MODEL(seecoder_decoder)
|
19 |
+
qtransformer_cfg : MODEL(seecoder_query_transformer_position_aware)
|
20 |
+
|
21 |
+
###########
|
22 |
+
# decoder #
|
23 |
+
###########
|
24 |
+
|
25 |
+
seecoder_decoder:
|
26 |
+
super_cfg: seecoder_base
|
27 |
+
type: seecoder_decoder
|
28 |
+
args:
|
29 |
+
inchannels:
|
30 |
+
res3: 384
|
31 |
+
res4: 768
|
32 |
+
res5: 1536
|
33 |
+
trans_input_tags: ['res3', 'res4', 'res5']
|
34 |
+
trans_dim: 768
|
35 |
+
trans_dropout: 0.1
|
36 |
+
trans_nheads: 8
|
37 |
+
trans_feedforward_dim: 1024
|
38 |
+
trans_num_layers: 6
|
39 |
+
|
40 |
+
#####################
|
41 |
+
# query_transformer #
|
42 |
+
#####################
|
43 |
+
|
44 |
+
seecoder_query_transformer:
|
45 |
+
super_cfg: seecoder_base
|
46 |
+
type: seecoder_query_transformer
|
47 |
+
args:
|
48 |
+
in_channels : 768
|
49 |
+
hidden_dim: 768
|
50 |
+
num_queries: [4, 144]
|
51 |
+
nheads: 8
|
52 |
+
num_layers: 9
|
53 |
+
feedforward_dim: 2048
|
54 |
+
pre_norm: False
|
55 |
+
num_feature_levels: 3
|
56 |
+
enforce_input_project: False
|
57 |
+
with_fea2d_pos: false
|
58 |
+
|
59 |
+
seecoder_query_transformer_position_aware:
|
60 |
+
super_cfg: seecoder_query_transformer
|
61 |
+
args:
|
62 |
+
with_fea2d_pos: true
|
configs/model/swin.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
swin:
|
2 |
+
symbol: swin
|
3 |
+
args: {}
|
4 |
+
|
5 |
+
swin_base:
|
6 |
+
super_cfg: swin
|
7 |
+
type: swin
|
8 |
+
args:
|
9 |
+
embed_dim: 128
|
10 |
+
depths: [ 2, 2, 18, 2 ]
|
11 |
+
num_heads: [ 4, 8, 16, 32 ]
|
12 |
+
window_size: 7
|
13 |
+
ape: False
|
14 |
+
drop_path_rate: 0.3
|
15 |
+
patch_norm: True
|
16 |
+
pretrained: pretrained/swin/swin_base_patch4_window7_224_22k.pth
|
17 |
+
strict_sd: False
|
18 |
+
|
19 |
+
swin_large:
|
20 |
+
super_cfg: swin
|
21 |
+
type: swin
|
22 |
+
args:
|
23 |
+
embed_dim: 192
|
24 |
+
depths: [ 2, 2, 18, 2 ]
|
25 |
+
num_heads: [ 6, 12, 24, 48 ]
|
26 |
+
window_size: 12
|
27 |
+
ape: False
|
28 |
+
drop_path_rate: 0.3
|
29 |
+
patch_norm: True
|
30 |
+
pretrained: pretrained/swin/swin_large_patch4_window12_384_22k.pth
|
31 |
+
strict_sd: False
|
32 |
+
|
lib/__init__.py
ADDED
File without changes
|
lib/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (150 Bytes). View file
|
|
lib/__pycache__/cfg_helper.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
lib/__pycache__/cfg_holder.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
lib/__pycache__/log_service.cpython-310.pyc
ADDED
Binary file (5.01 kB). View file
|
|
lib/__pycache__/sync.cpython-310.pyc
ADDED
Binary file (7.51 kB). View file
|
|
lib/cfg_helper.py
ADDED
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import shutil
|
4 |
+
import copy
|
5 |
+
import time
|
6 |
+
import pprint
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import matplotlib
|
10 |
+
import argparse
|
11 |
+
import json
|
12 |
+
import yaml
|
13 |
+
from easydict import EasyDict as edict
|
14 |
+
|
15 |
+
from .model_zoo import get_model
|
16 |
+
|
17 |
+
############
|
18 |
+
# cfg_bank #
|
19 |
+
############
|
20 |
+
|
21 |
+
def cfg_solvef(cmd, root):
|
22 |
+
if not isinstance(cmd, str):
|
23 |
+
return cmd
|
24 |
+
|
25 |
+
if cmd.find('SAME')==0:
|
26 |
+
zoom = root
|
27 |
+
p = cmd[len('SAME'):].strip('()').split('.')
|
28 |
+
p = [pi.strip() for pi in p]
|
29 |
+
for pi in p:
|
30 |
+
try:
|
31 |
+
pi = int(pi)
|
32 |
+
except:
|
33 |
+
pass
|
34 |
+
|
35 |
+
try:
|
36 |
+
zoom = zoom[pi]
|
37 |
+
except:
|
38 |
+
return cmd
|
39 |
+
return cfg_solvef(zoom, root)
|
40 |
+
|
41 |
+
if cmd.find('SEARCH')==0:
|
42 |
+
zoom = root
|
43 |
+
p = cmd[len('SEARCH'):].strip('()').split('.')
|
44 |
+
p = [pi.strip() for pi in p]
|
45 |
+
find = True
|
46 |
+
# Depth first search
|
47 |
+
for pi in p:
|
48 |
+
try:
|
49 |
+
pi = int(pi)
|
50 |
+
except:
|
51 |
+
pass
|
52 |
+
|
53 |
+
try:
|
54 |
+
zoom = zoom[pi]
|
55 |
+
except:
|
56 |
+
find = False
|
57 |
+
break
|
58 |
+
|
59 |
+
if find:
|
60 |
+
return cfg_solvef(zoom, root)
|
61 |
+
else:
|
62 |
+
if isinstance(root, dict):
|
63 |
+
for ri in root:
|
64 |
+
rv = cfg_solvef(cmd, root[ri])
|
65 |
+
if rv != cmd:
|
66 |
+
return rv
|
67 |
+
if isinstance(root, list):
|
68 |
+
for ri in root:
|
69 |
+
rv = cfg_solvef(cmd, ri)
|
70 |
+
if rv != cmd:
|
71 |
+
return rv
|
72 |
+
return cmd
|
73 |
+
|
74 |
+
if cmd.find('MODEL')==0:
|
75 |
+
goto = cmd[len('MODEL'):].strip('()')
|
76 |
+
return model_cfg_bank()(goto)
|
77 |
+
|
78 |
+
if cmd.find('DATASET')==0:
|
79 |
+
goto = cmd[len('DATASET'):].strip('()')
|
80 |
+
return dataset_cfg_bank()(goto)
|
81 |
+
|
82 |
+
return cmd
|
83 |
+
|
84 |
+
def cfg_solve(cfg, cfg_root):
|
85 |
+
# The function solve cfg element such that
|
86 |
+
# all sorrogate input are settled.
|
87 |
+
# (i.e. SAME(***) )
|
88 |
+
if isinstance(cfg, list):
|
89 |
+
for i in range(len(cfg)):
|
90 |
+
if isinstance(cfg[i], (list, dict)):
|
91 |
+
cfg[i] = cfg_solve(cfg[i], cfg_root)
|
92 |
+
else:
|
93 |
+
cfg[i] = cfg_solvef(cfg[i], cfg_root)
|
94 |
+
if isinstance(cfg, dict):
|
95 |
+
for k in cfg:
|
96 |
+
if isinstance(cfg[k], (list, dict)):
|
97 |
+
cfg[k] = cfg_solve(cfg[k], cfg_root)
|
98 |
+
else:
|
99 |
+
cfg[k] = cfg_solvef(cfg[k], cfg_root)
|
100 |
+
return cfg
|
101 |
+
|
102 |
+
class model_cfg_bank(object):
|
103 |
+
def __init__(self):
|
104 |
+
self.cfg_dir = osp.join('configs', 'model')
|
105 |
+
self.cfg_bank = edict()
|
106 |
+
|
107 |
+
def __call__(self, name):
|
108 |
+
if name not in self.cfg_bank:
|
109 |
+
cfg_path = self.get_yaml_path(name)
|
110 |
+
with open(cfg_path, 'r') as f:
|
111 |
+
cfg_new = yaml.load(
|
112 |
+
f, Loader=yaml.FullLoader)
|
113 |
+
cfg_new = edict(cfg_new)
|
114 |
+
self.cfg_bank.update(cfg_new)
|
115 |
+
|
116 |
+
cfg = self.cfg_bank[name]
|
117 |
+
cfg.name = name
|
118 |
+
if 'super_cfg' not in cfg:
|
119 |
+
cfg = cfg_solve(cfg, cfg)
|
120 |
+
self.cfg_bank[name] = cfg
|
121 |
+
return copy.deepcopy(cfg)
|
122 |
+
|
123 |
+
super_cfg = self.__call__(cfg.super_cfg)
|
124 |
+
# unlike other field,
|
125 |
+
# args will not be replaced but update.
|
126 |
+
if 'args' in cfg:
|
127 |
+
if 'args' in super_cfg:
|
128 |
+
super_cfg.args.update(cfg.args)
|
129 |
+
else:
|
130 |
+
super_cfg.args = cfg.args
|
131 |
+
cfg.pop('args')
|
132 |
+
|
133 |
+
super_cfg.update(cfg)
|
134 |
+
super_cfg.pop('super_cfg')
|
135 |
+
cfg = super_cfg
|
136 |
+
try:
|
137 |
+
delete_args = cfg.pop('delete_args')
|
138 |
+
except:
|
139 |
+
delete_args = []
|
140 |
+
|
141 |
+
for dargs in delete_args:
|
142 |
+
cfg.args.pop(dargs)
|
143 |
+
|
144 |
+
cfg = cfg_solve(cfg, cfg)
|
145 |
+
self.cfg_bank[name] = cfg
|
146 |
+
return copy.deepcopy(cfg)
|
147 |
+
|
148 |
+
def get_yaml_path(self, name):
|
149 |
+
if name.find('openai_unet')==0:
|
150 |
+
return osp.join(
|
151 |
+
self.cfg_dir, 'openai_unet.yaml')
|
152 |
+
elif name.find('clip')==0:
|
153 |
+
return osp.join(
|
154 |
+
self.cfg_dir, 'clip.yaml')
|
155 |
+
elif name.find('autokl')==0:
|
156 |
+
return osp.join(
|
157 |
+
self.cfg_dir, 'autokl.yaml')
|
158 |
+
elif name.find('controlnet')==0:
|
159 |
+
return osp.join(
|
160 |
+
self.cfg_dir, 'controlnet.yaml')
|
161 |
+
elif name.find('swin')==0:
|
162 |
+
return osp.join(
|
163 |
+
self.cfg_dir, 'swin.yaml')
|
164 |
+
elif name.find('pfd')==0:
|
165 |
+
return osp.join(
|
166 |
+
self.cfg_dir, 'pfd.yaml')
|
167 |
+
elif name.find('seecoder')==0:
|
168 |
+
return osp.join(
|
169 |
+
self.cfg_dir, 'seecoder.yaml')
|
170 |
+
else:
|
171 |
+
raise ValueError
|
172 |
+
|
173 |
+
class dataset_cfg_bank(object):
|
174 |
+
def __init__(self):
|
175 |
+
self.cfg_dir = osp.join('configs', 'dataset')
|
176 |
+
self.cfg_bank = edict()
|
177 |
+
|
178 |
+
def __call__(self, name):
|
179 |
+
if name not in self.cfg_bank:
|
180 |
+
cfg_path = self.get_yaml_path(name)
|
181 |
+
with open(cfg_path, 'r') as f:
|
182 |
+
cfg_new = yaml.load(
|
183 |
+
f, Loader=yaml.FullLoader)
|
184 |
+
cfg_new = edict(cfg_new)
|
185 |
+
self.cfg_bank.update(cfg_new)
|
186 |
+
|
187 |
+
cfg = self.cfg_bank[name]
|
188 |
+
cfg.name = name
|
189 |
+
if cfg.get('super_cfg', None) is None:
|
190 |
+
cfg = cfg_solve(cfg, cfg)
|
191 |
+
self.cfg_bank[name] = cfg
|
192 |
+
return copy.deepcopy(cfg)
|
193 |
+
|
194 |
+
super_cfg = self.__call__(cfg.super_cfg)
|
195 |
+
super_cfg.update(cfg)
|
196 |
+
cfg = super_cfg
|
197 |
+
cfg.super_cfg = None
|
198 |
+
try:
|
199 |
+
delete = cfg.pop('delete')
|
200 |
+
except:
|
201 |
+
delete = []
|
202 |
+
|
203 |
+
for dargs in delete:
|
204 |
+
cfg.pop(dargs)
|
205 |
+
|
206 |
+
cfg = cfg_solve(cfg, cfg)
|
207 |
+
self.cfg_bank[name] = cfg
|
208 |
+
return copy.deepcopy(cfg)
|
209 |
+
|
210 |
+
def get_yaml_path(self, name):
|
211 |
+
if name.find('cityscapes')==0:
|
212 |
+
return osp.join(
|
213 |
+
self.cfg_dir, 'cityscapes.yaml')
|
214 |
+
elif name.find('div2k')==0:
|
215 |
+
return osp.join(
|
216 |
+
self.cfg_dir, 'div2k.yaml')
|
217 |
+
elif name.find('gandiv2k')==0:
|
218 |
+
return osp.join(
|
219 |
+
self.cfg_dir, 'gandiv2k.yaml')
|
220 |
+
elif name.find('srbenchmark')==0:
|
221 |
+
return osp.join(
|
222 |
+
self.cfg_dir, 'srbenchmark.yaml')
|
223 |
+
elif name.find('imagedir')==0:
|
224 |
+
return osp.join(
|
225 |
+
self.cfg_dir, 'imagedir.yaml')
|
226 |
+
elif name.find('places2')==0:
|
227 |
+
return osp.join(
|
228 |
+
self.cfg_dir, 'places2.yaml')
|
229 |
+
elif name.find('ffhq')==0:
|
230 |
+
return osp.join(
|
231 |
+
self.cfg_dir, 'ffhq.yaml')
|
232 |
+
elif name.find('imcpt')==0:
|
233 |
+
return osp.join(
|
234 |
+
self.cfg_dir, 'imcpt.yaml')
|
235 |
+
elif name.find('texture')==0:
|
236 |
+
return osp.join(
|
237 |
+
self.cfg_dir, 'texture.yaml')
|
238 |
+
elif name.find('openimages')==0:
|
239 |
+
return osp.join(
|
240 |
+
self.cfg_dir, 'openimages.yaml')
|
241 |
+
elif name.find('laion2b')==0:
|
242 |
+
return osp.join(
|
243 |
+
self.cfg_dir, 'laion2b.yaml')
|
244 |
+
elif name.find('laionart')==0:
|
245 |
+
return osp.join(
|
246 |
+
self.cfg_dir, 'laionart.yaml')
|
247 |
+
elif name.find('celeba')==0:
|
248 |
+
return osp.join(
|
249 |
+
self.cfg_dir, 'celeba.yaml')
|
250 |
+
elif name.find('coyo')==0:
|
251 |
+
return osp.join(
|
252 |
+
self.cfg_dir, 'coyo.yaml')
|
253 |
+
elif name.find('pafc')==0:
|
254 |
+
return osp.join(
|
255 |
+
self.cfg_dir, 'pafc.yaml')
|
256 |
+
elif name.find('coco')==0:
|
257 |
+
return osp.join(
|
258 |
+
self.cfg_dir, 'coco.yaml')
|
259 |
+
elif name.find('genai')==0:
|
260 |
+
return osp.join(
|
261 |
+
self.cfg_dir, 'genai.yaml')
|
262 |
+
else:
|
263 |
+
raise ValueError
|
264 |
+
|
265 |
+
class experiment_cfg_bank(object):
|
266 |
+
def __init__(self):
|
267 |
+
self.cfg_dir = osp.join('configs', 'experiment')
|
268 |
+
self.cfg_bank = edict()
|
269 |
+
|
270 |
+
def __call__(self, name):
|
271 |
+
if name not in self.cfg_bank:
|
272 |
+
cfg_path = self.get_yaml_path(name)
|
273 |
+
with open(cfg_path, 'r') as f:
|
274 |
+
cfg = yaml.load(
|
275 |
+
f, Loader=yaml.FullLoader)
|
276 |
+
cfg = edict(cfg)
|
277 |
+
|
278 |
+
cfg = cfg_solve(cfg, cfg)
|
279 |
+
cfg = cfg_solve(cfg, cfg)
|
280 |
+
# twice for SEARCH
|
281 |
+
self.cfg_bank[name] = cfg
|
282 |
+
return copy.deepcopy(cfg)
|
283 |
+
|
284 |
+
def get_yaml_path(self, name):
|
285 |
+
return osp.join(
|
286 |
+
self.cfg_dir, name+'.yaml')
|
287 |
+
|
288 |
+
def load_cfg_yaml(path):
|
289 |
+
if osp.isfile(path):
|
290 |
+
cfg_path = path
|
291 |
+
elif osp.isfile(osp.join('configs', 'experiment', path)):
|
292 |
+
cfg_path = osp.join('configs', 'experiment', path)
|
293 |
+
elif osp.isfile(osp.join('configs', 'experiment', path+'.yaml')):
|
294 |
+
cfg_path = osp.join('configs', 'experiment', path+'.yaml')
|
295 |
+
else:
|
296 |
+
assert False, 'No such config!'
|
297 |
+
|
298 |
+
with open(cfg_path, 'r') as f:
|
299 |
+
cfg = yaml.load(f, Loader=yaml.FullLoader)
|
300 |
+
cfg = edict(cfg)
|
301 |
+
cfg = cfg_solve(cfg, cfg)
|
302 |
+
cfg = cfg_solve(cfg, cfg)
|
303 |
+
return cfg
|
304 |
+
|
305 |
+
##############
|
306 |
+
# cfg_helper #
|
307 |
+
##############
|
308 |
+
|
309 |
+
def get_experiment_id(ref=None):
|
310 |
+
if ref is None:
|
311 |
+
time.sleep(0.5)
|
312 |
+
return int(time.time()*100)
|
313 |
+
else:
|
314 |
+
try:
|
315 |
+
return int(ref)
|
316 |
+
except:
|
317 |
+
pass
|
318 |
+
|
319 |
+
_, ref = osp.split(ref)
|
320 |
+
ref = ref.split('_')[0]
|
321 |
+
try:
|
322 |
+
return int(ref)
|
323 |
+
except:
|
324 |
+
assert False, 'Invalid experiment ID!'
|
325 |
+
|
326 |
+
def record_resume_cfg(path):
|
327 |
+
cnt = 0
|
328 |
+
while True:
|
329 |
+
if osp.exists(path+'.{:04d}'.format(cnt)):
|
330 |
+
cnt += 1
|
331 |
+
continue
|
332 |
+
shutil.copyfile(path, path+'.{:04d}'.format(cnt))
|
333 |
+
break
|
334 |
+
|
335 |
+
def get_command_line_args():
|
336 |
+
parser = argparse.ArgumentParser()
|
337 |
+
parser.add_argument('--debug', action='store_true', default=False)
|
338 |
+
parser.add_argument('--config', type=str)
|
339 |
+
parser.add_argument('--gpu', nargs='+', type=int)
|
340 |
+
|
341 |
+
parser.add_argument('--node_rank', type=int)
|
342 |
+
parser.add_argument('--node_list', nargs='+', type=str)
|
343 |
+
parser.add_argument('--nodes', type=int)
|
344 |
+
parser.add_argument('--addr', type=str, default='127.0.0.1')
|
345 |
+
parser.add_argument('--port', type=int, default=11233)
|
346 |
+
|
347 |
+
parser.add_argument('--signature', nargs='+', type=str)
|
348 |
+
parser.add_argument('--seed', type=int)
|
349 |
+
|
350 |
+
parser.add_argument('--eval', type=str)
|
351 |
+
parser.add_argument('--eval_subdir', type=str)
|
352 |
+
parser.add_argument('--pretrained', type=str)
|
353 |
+
|
354 |
+
parser.add_argument('--resume_dir', type=str)
|
355 |
+
parser.add_argument('--resume_step', type=int)
|
356 |
+
parser.add_argument('--resume_weight', type=str)
|
357 |
+
|
358 |
+
args = parser.parse_args()
|
359 |
+
|
360 |
+
# Special handling the resume
|
361 |
+
if args.resume_dir is not None:
|
362 |
+
cfg = edict()
|
363 |
+
cfg.env = edict()
|
364 |
+
cfg.env.debug = args.debug
|
365 |
+
cfg.env.resume = edict()
|
366 |
+
cfg.env.resume.dir = args.resume_dir
|
367 |
+
cfg.env.resume.step = args.resume_step
|
368 |
+
cfg.env.resume.weight = args.resume_weight
|
369 |
+
return cfg
|
370 |
+
|
371 |
+
cfg = load_cfg_yaml(args.config)
|
372 |
+
cfg.env.debug = args.debug
|
373 |
+
cfg.env.gpu_device = [0] if args.gpu is None else list(args.gpu)
|
374 |
+
cfg.env.master_addr = args.addr
|
375 |
+
cfg.env.master_port = args.port
|
376 |
+
cfg.env.dist_url = 'tcp://{}:{}'.format(args.addr, args.port)
|
377 |
+
|
378 |
+
if args.node_list is None:
|
379 |
+
cfg.env.node_rank = 0 if args.node_rank is None else args.node_rank
|
380 |
+
cfg.env.nodes = 1 if args.nodes is None else args.nodes
|
381 |
+
else:
|
382 |
+
import socket
|
383 |
+
hostname = socket.gethostname()
|
384 |
+
assert cfg.env.master_addr == args.node_list[0]
|
385 |
+
cfg.env.node_rank = args.node_list.index(hostname)
|
386 |
+
cfg.env.nodes = len(args.node_list)
|
387 |
+
cfg.env.node_list = args.node_list
|
388 |
+
|
389 |
+
istrain = False if args.eval is not None else True
|
390 |
+
isdebug = cfg.env.debug
|
391 |
+
|
392 |
+
if istrain:
|
393 |
+
if isdebug:
|
394 |
+
cfg.env.experiment_id = 999999999999
|
395 |
+
cfg.train.signature = ['debug']
|
396 |
+
else:
|
397 |
+
cfg.env.experiment_id = get_experiment_id()
|
398 |
+
if args.signature is not None:
|
399 |
+
cfg.train.signature = args.signature
|
400 |
+
else:
|
401 |
+
if 'train' in cfg:
|
402 |
+
cfg.pop('train')
|
403 |
+
cfg.env.experiment_id = get_experiment_id(args.eval)
|
404 |
+
if args.signature is not None:
|
405 |
+
cfg.eval.signature = args.signature
|
406 |
+
|
407 |
+
if isdebug and (args.eval is None):
|
408 |
+
cfg.env.experiment_id = 999999999999
|
409 |
+
cfg.eval.signature = ['debug']
|
410 |
+
|
411 |
+
if args.eval_subdir is not None:
|
412 |
+
if isdebug:
|
413 |
+
cfg.eval.eval_subdir = 'debug'
|
414 |
+
else:
|
415 |
+
cfg.eval.eval_subdir = args.eval_subdir
|
416 |
+
if args.pretrained is not None:
|
417 |
+
cfg.eval.pretrained = args.pretrained
|
418 |
+
# The override pretrained over the setting in cfg.model
|
419 |
+
|
420 |
+
if args.seed is not None:
|
421 |
+
cfg.env.rnd_seed = args.seed
|
422 |
+
|
423 |
+
return cfg
|
424 |
+
|
425 |
+
def cfg_initiates(cfg):
|
426 |
+
cfge = cfg.env
|
427 |
+
isdebug = cfge.debug
|
428 |
+
isresume = 'resume' in cfge
|
429 |
+
istrain = 'train' in cfg
|
430 |
+
haseval = 'eval' in cfg
|
431 |
+
cfgt = cfg.train if istrain else None
|
432 |
+
cfgv = cfg.eval if haseval else None
|
433 |
+
|
434 |
+
###############################
|
435 |
+
# get some environment params #
|
436 |
+
###############################
|
437 |
+
|
438 |
+
cfge.computer = os.uname()
|
439 |
+
cfge.torch_version = str(torch.__version__)
|
440 |
+
|
441 |
+
##########
|
442 |
+
# resume #
|
443 |
+
##########
|
444 |
+
|
445 |
+
if isresume:
|
446 |
+
resume_cfg_path = osp.join(cfge.resume.dir, 'config.yaml')
|
447 |
+
record_resume_cfg(resume_cfg_path)
|
448 |
+
with open(resume_cfg_path, 'r') as f:
|
449 |
+
cfg_resume = yaml.load(f, Loader=yaml.FullLoader)
|
450 |
+
cfg_resume = edict(cfg_resume)
|
451 |
+
cfg_resume.env.update(cfge)
|
452 |
+
cfg = cfg_resume
|
453 |
+
cfge = cfg.env
|
454 |
+
log_file = cfg.train.log_file
|
455 |
+
|
456 |
+
print('')
|
457 |
+
print('##########')
|
458 |
+
print('# resume #')
|
459 |
+
print('##########')
|
460 |
+
print('')
|
461 |
+
with open(log_file, 'a') as f:
|
462 |
+
print('', file=f)
|
463 |
+
print('##########', file=f)
|
464 |
+
print('# resume #', file=f)
|
465 |
+
print('##########', file=f)
|
466 |
+
print('', file=f)
|
467 |
+
|
468 |
+
pprint.pprint(cfg)
|
469 |
+
with open(log_file, 'a') as f:
|
470 |
+
pprint.pprint(cfg, f)
|
471 |
+
|
472 |
+
####################
|
473 |
+
# node distributed #
|
474 |
+
####################
|
475 |
+
|
476 |
+
if cfg.env.master_addr!='127.0.0.1':
|
477 |
+
os.environ['MASTER_ADDR'] = cfge.master_addr
|
478 |
+
os.environ['MASTER_PORT'] = '{}'.format(cfge.master_port)
|
479 |
+
if cfg.env.dist_backend=='nccl':
|
480 |
+
os.environ['NCCL_SOCKET_FAMILY'] = 'AF_INET'
|
481 |
+
if cfg.env.dist_backend=='gloo':
|
482 |
+
os.environ['GLOO_SOCKET_FAMILY'] = 'AF_INET'
|
483 |
+
|
484 |
+
#######################
|
485 |
+
# cuda visible device #
|
486 |
+
#######################
|
487 |
+
|
488 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
|
489 |
+
[str(gid) for gid in cfge.gpu_device])
|
490 |
+
|
491 |
+
#####################
|
492 |
+
# return resume cfg #
|
493 |
+
#####################
|
494 |
+
|
495 |
+
if isresume:
|
496 |
+
return cfg
|
497 |
+
|
498 |
+
#############################################
|
499 |
+
# some misc setting that not need in resume #
|
500 |
+
#############################################
|
501 |
+
|
502 |
+
cfgm = cfg.model
|
503 |
+
cfge.gpu_count = len(cfge.gpu_device)
|
504 |
+
|
505 |
+
##########################################
|
506 |
+
# align batch size and num worker config #
|
507 |
+
##########################################
|
508 |
+
|
509 |
+
gpu_n = cfge.gpu_count * cfge.nodes
|
510 |
+
def align_batch_size(bs, bs_per_gpu):
|
511 |
+
assert (bs is not None) or (bs_per_gpu is not None)
|
512 |
+
bs = bs_per_gpu * gpu_n if bs is None else bs
|
513 |
+
bs_per_gpu = bs // gpu_n if bs_per_gpu is None else bs_per_gpu
|
514 |
+
assert (bs == bs_per_gpu * gpu_n)
|
515 |
+
return bs, bs_per_gpu
|
516 |
+
|
517 |
+
if istrain:
|
518 |
+
cfgt.batch_size, cfgt.batch_size_per_gpu = \
|
519 |
+
align_batch_size(cfgt.batch_size, cfgt.batch_size_per_gpu)
|
520 |
+
cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu = \
|
521 |
+
align_batch_size(cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu)
|
522 |
+
if haseval:
|
523 |
+
cfgv.batch_size, cfgv.batch_size_per_gpu = \
|
524 |
+
align_batch_size(cfgv.batch_size, cfgv.batch_size_per_gpu)
|
525 |
+
cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu = \
|
526 |
+
align_batch_size(cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu)
|
527 |
+
|
528 |
+
##################
|
529 |
+
# create log dir #
|
530 |
+
##################
|
531 |
+
|
532 |
+
if istrain:
|
533 |
+
if not isdebug:
|
534 |
+
sig = cfgt.get('signature', [])
|
535 |
+
sig = sig + ['s{}'.format(cfge.rnd_seed)]
|
536 |
+
else:
|
537 |
+
sig = ['debug']
|
538 |
+
|
539 |
+
log_dir = [
|
540 |
+
cfge.log_root_dir,
|
541 |
+
'{}_{}'.format(cfgm.symbol, cfgt.dataset.symbol),
|
542 |
+
'_'.join([str(cfge.experiment_id)] + sig)
|
543 |
+
]
|
544 |
+
log_dir = osp.join(*log_dir)
|
545 |
+
log_file = osp.join(log_dir, 'train.log')
|
546 |
+
if not osp.exists(log_file):
|
547 |
+
os.makedirs(osp.dirname(log_file))
|
548 |
+
cfgt.log_dir = log_dir
|
549 |
+
cfgt.log_file = log_file
|
550 |
+
|
551 |
+
if haseval:
|
552 |
+
cfgv.log_dir = log_dir
|
553 |
+
cfgv.log_file = log_file
|
554 |
+
else:
|
555 |
+
model_symbol = cfgm.symbol
|
556 |
+
if cfgv.get('dataset', None) is None:
|
557 |
+
dataset_symbol = 'nodataset'
|
558 |
+
else:
|
559 |
+
dataset_symbol = cfgv.dataset.symbol
|
560 |
+
|
561 |
+
log_dir = osp.join(cfge.log_root_dir, '{}_{}'.format(model_symbol, dataset_symbol))
|
562 |
+
exp_dir = search_experiment_folder(log_dir, cfge.experiment_id)
|
563 |
+
if exp_dir is None:
|
564 |
+
if not isdebug:
|
565 |
+
sig = cfgv.get('signature', []) + ['evalonly']
|
566 |
+
else:
|
567 |
+
sig = ['debug']
|
568 |
+
exp_dir = '_'.join([str(cfge.experiment_id)] + sig)
|
569 |
+
|
570 |
+
eval_subdir = cfgv.get('eval_subdir', None)
|
571 |
+
# override subdir in debug mode (if eval_subdir is set)
|
572 |
+
eval_subdir = 'debug' if (eval_subdir is not None) and isdebug else eval_subdir
|
573 |
+
|
574 |
+
if eval_subdir is not None:
|
575 |
+
log_dir = osp.join(log_dir, exp_dir, eval_subdir)
|
576 |
+
else:
|
577 |
+
log_dir = osp.join(log_dir, exp_dir)
|
578 |
+
|
579 |
+
disable_log_override = cfgv.get('disable_log_override', False)
|
580 |
+
if osp.isdir(log_dir):
|
581 |
+
if disable_log_override:
|
582 |
+
assert False, 'Override an exsited log_dir is disabled at [{}]'.format(log_dir)
|
583 |
+
else:
|
584 |
+
os.makedirs(log_dir)
|
585 |
+
|
586 |
+
log_file = osp.join(log_dir, 'eval.log')
|
587 |
+
cfgv.log_dir = log_dir
|
588 |
+
cfgv.log_file = log_file
|
589 |
+
|
590 |
+
######################
|
591 |
+
# print and save cfg #
|
592 |
+
######################
|
593 |
+
|
594 |
+
pprint.pprint(cfg)
|
595 |
+
if cfge.node_rank==0:
|
596 |
+
with open(log_file, 'w') as f:
|
597 |
+
pprint.pprint(cfg, f)
|
598 |
+
with open(osp.join(log_dir, 'config.yaml'), 'w') as f:
|
599 |
+
yaml.dump(edict_2_dict(cfg), f)
|
600 |
+
else:
|
601 |
+
with open(osp.join(log_dir, 'config.yaml.{}'.format(cfge.node_rank)), 'w') as f:
|
602 |
+
yaml.dump(edict_2_dict(cfg), f)
|
603 |
+
|
604 |
+
#############
|
605 |
+
# save code #
|
606 |
+
#############
|
607 |
+
|
608 |
+
save_code = False
|
609 |
+
if istrain:
|
610 |
+
save_code = cfgt.get('save_code', False)
|
611 |
+
elif haseval:
|
612 |
+
save_code = cfgv.get('save_code', False)
|
613 |
+
save_code = save_code and (cfge.node_rank==0)
|
614 |
+
|
615 |
+
if save_code:
|
616 |
+
codedir = osp.join(log_dir, 'code')
|
617 |
+
if osp.exists(codedir):
|
618 |
+
shutil.rmtree(codedir)
|
619 |
+
for d in ['configs', 'lib']:
|
620 |
+
fromcodedir = d
|
621 |
+
tocodedir = osp.join(codedir, d)
|
622 |
+
shutil.copytree(
|
623 |
+
fromcodedir, tocodedir,
|
624 |
+
ignore=shutil.ignore_patterns(
|
625 |
+
'*__pycache__*', '*build*'))
|
626 |
+
for codei in os.listdir('.'):
|
627 |
+
if osp.splitext(codei)[1] == 'py':
|
628 |
+
shutil.copy(codei, codedir)
|
629 |
+
|
630 |
+
#######################
|
631 |
+
# set matplotlib mode #
|
632 |
+
#######################
|
633 |
+
|
634 |
+
if 'matplotlib_mode' in cfge:
|
635 |
+
try:
|
636 |
+
matplotlib.use(cfge.matplotlib_mode)
|
637 |
+
except:
|
638 |
+
print('Warning: matplotlib mode [{}] failed to be set!'.format(cfge.matplotlib_mode))
|
639 |
+
|
640 |
+
return cfg
|
641 |
+
|
642 |
+
def edict_2_dict(x):
|
643 |
+
if isinstance(x, dict):
|
644 |
+
xnew = {}
|
645 |
+
for k in x:
|
646 |
+
xnew[k] = edict_2_dict(x[k])
|
647 |
+
return xnew
|
648 |
+
elif isinstance(x, list):
|
649 |
+
xnew = []
|
650 |
+
for i in range(len(x)):
|
651 |
+
xnew.append( edict_2_dict(x[i]) )
|
652 |
+
return xnew
|
653 |
+
else:
|
654 |
+
return x
|
655 |
+
|
656 |
+
def search_experiment_folder(root, exid):
|
657 |
+
target = None
|
658 |
+
for fi in os.listdir(root):
|
659 |
+
if not osp.isdir(osp.join(root, fi)):
|
660 |
+
continue
|
661 |
+
if int(fi.split('_')[0]) == exid:
|
662 |
+
if target is not None:
|
663 |
+
return None # duplicated
|
664 |
+
elif target is None:
|
665 |
+
target = fi
|
666 |
+
return target
|
lib/cfg_holder.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
def singleton(class_):
|
4 |
+
instances = {}
|
5 |
+
def getinstance(*args, **kwargs):
|
6 |
+
if class_ not in instances:
|
7 |
+
instances[class_] = class_(*args, **kwargs)
|
8 |
+
return instances[class_]
|
9 |
+
return getinstance
|
10 |
+
|
11 |
+
##############
|
12 |
+
# cfg_holder #
|
13 |
+
##############
|
14 |
+
|
15 |
+
@singleton
|
16 |
+
class cfg_unique_holder(object):
|
17 |
+
def __init__(self):
|
18 |
+
self.cfg = None
|
19 |
+
# this is use to track the main codes.
|
20 |
+
self.code = set()
|
21 |
+
def save_cfg(self, cfg):
|
22 |
+
self.cfg = copy.deepcopy(cfg)
|
23 |
+
def add_code(self, code):
|
24 |
+
"""
|
25 |
+
A new main code is reached and
|
26 |
+
its name is added.
|
27 |
+
"""
|
28 |
+
self.code.add(code)
|
lib/log_service.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timeit
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import shutil
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.distributed as dist
|
10 |
+
from .cfg_holder import cfg_unique_holder as cfguh
|
11 |
+
from . import sync
|
12 |
+
|
13 |
+
def print_log(*console_info):
|
14 |
+
grank, lrank, _ = sync.get_rank('all')
|
15 |
+
if lrank!=0:
|
16 |
+
return
|
17 |
+
|
18 |
+
console_info = [str(i) for i in console_info]
|
19 |
+
console_info = ' '.join(console_info)
|
20 |
+
print(console_info)
|
21 |
+
|
22 |
+
if grank!=0:
|
23 |
+
return
|
24 |
+
|
25 |
+
log_file = None
|
26 |
+
try:
|
27 |
+
log_file = cfguh().cfg.train.log_file
|
28 |
+
except:
|
29 |
+
try:
|
30 |
+
log_file = cfguh().cfg.eval.log_file
|
31 |
+
except:
|
32 |
+
return
|
33 |
+
if log_file is not None:
|
34 |
+
with open(log_file, 'a') as f:
|
35 |
+
f.write(console_info + '\n')
|
36 |
+
|
37 |
+
class distributed_log_manager(object):
|
38 |
+
def __init__(self):
|
39 |
+
self.sum = {}
|
40 |
+
self.cnt = {}
|
41 |
+
self.time_check = timeit.default_timer()
|
42 |
+
|
43 |
+
cfgt = cfguh().cfg.train
|
44 |
+
self.ddp = sync.is_ddp()
|
45 |
+
self.grank, self.lrank, _ = sync.get_rank('all')
|
46 |
+
self.gwsize = sync.get_world_size('global')
|
47 |
+
|
48 |
+
use_tensorboard = cfgt.get('log_tensorboard', False) and (self.grank==0)
|
49 |
+
|
50 |
+
self.tb = None
|
51 |
+
if use_tensorboard:
|
52 |
+
import tensorboardX
|
53 |
+
monitoring_dir = osp.join(cfguh().cfg.train.log_dir, 'tensorboard')
|
54 |
+
self.tb = tensorboardX.SummaryWriter(osp.join(monitoring_dir))
|
55 |
+
|
56 |
+
def accumulate(self, n, **data):
|
57 |
+
if n < 0:
|
58 |
+
raise ValueError
|
59 |
+
|
60 |
+
for itemn, di in data.items():
|
61 |
+
if itemn in self.sum:
|
62 |
+
self.sum[itemn] += di * n
|
63 |
+
self.cnt[itemn] += n
|
64 |
+
else:
|
65 |
+
self.sum[itemn] = di * n
|
66 |
+
self.cnt[itemn] = n
|
67 |
+
|
68 |
+
def get_mean_value_dict(self):
|
69 |
+
value_gather = [
|
70 |
+
self.sum[itemn]/self.cnt[itemn] \
|
71 |
+
for itemn in sorted(self.sum.keys()) ]
|
72 |
+
|
73 |
+
value_gather_tensor = torch.FloatTensor(value_gather).to(self.lrank)
|
74 |
+
if self.ddp:
|
75 |
+
dist.all_reduce(value_gather_tensor, op=dist.ReduceOp.SUM)
|
76 |
+
value_gather_tensor /= self.gwsize
|
77 |
+
|
78 |
+
mean = {}
|
79 |
+
for idx, itemn in enumerate(sorted(self.sum.keys())):
|
80 |
+
mean[itemn] = value_gather_tensor[idx].item()
|
81 |
+
return mean
|
82 |
+
|
83 |
+
def tensorboard_log(self, step, data, mode='train', **extra):
|
84 |
+
if self.tb is None:
|
85 |
+
return
|
86 |
+
if mode == 'train':
|
87 |
+
self.tb.add_scalar('other/epochn', extra['epochn'], step)
|
88 |
+
if ('lr' in extra) and (extra['lr'] is not None):
|
89 |
+
self.tb.add_scalar('other/lr', extra['lr'], step)
|
90 |
+
for itemn, di in data.items():
|
91 |
+
if itemn.find('loss') == 0:
|
92 |
+
self.tb.add_scalar('loss/'+itemn, di, step)
|
93 |
+
elif itemn == 'Loss':
|
94 |
+
self.tb.add_scalar('Loss', di, step)
|
95 |
+
else:
|
96 |
+
self.tb.add_scalar('other/'+itemn, di, step)
|
97 |
+
elif mode == 'eval':
|
98 |
+
if isinstance(data, dict):
|
99 |
+
for itemn, di in data.items():
|
100 |
+
self.tb.add_scalar('eval/'+itemn, di, step)
|
101 |
+
else:
|
102 |
+
self.tb.add_scalar('eval', data, step)
|
103 |
+
return
|
104 |
+
|
105 |
+
def train_summary(self, itern, epochn, samplen, lr, tbstep=None):
|
106 |
+
console_info = [
|
107 |
+
'Iter:{}'.format(itern),
|
108 |
+
'Epoch:{}'.format(epochn),
|
109 |
+
'Sample:{}'.format(samplen),]
|
110 |
+
|
111 |
+
if lr is not None:
|
112 |
+
console_info += ['LR:{:.4E}'.format(lr)]
|
113 |
+
|
114 |
+
mean = self.get_mean_value_dict()
|
115 |
+
|
116 |
+
tbstep = itern if tbstep is None else tbstep
|
117 |
+
self.tensorboard_log(
|
118 |
+
tbstep, mean, mode='train',
|
119 |
+
itern=itern, epochn=epochn, lr=lr)
|
120 |
+
|
121 |
+
loss = mean.pop('Loss')
|
122 |
+
mean_info = ['Loss:{:.4f}'.format(loss)] + [
|
123 |
+
'{}:{:.4f}'.format(itemn, mean[itemn]) \
|
124 |
+
for itemn in sorted(mean.keys()) \
|
125 |
+
if itemn.find('loss') == 0
|
126 |
+
]
|
127 |
+
console_info += mean_info
|
128 |
+
console_info.append('Time:{:.2f}s'.format(
|
129 |
+
timeit.default_timer() - self.time_check))
|
130 |
+
return ' , '.join(console_info)
|
131 |
+
|
132 |
+
def clear(self):
|
133 |
+
self.sum = {}
|
134 |
+
self.cnt = {}
|
135 |
+
self.time_check = timeit.default_timer()
|
136 |
+
|
137 |
+
def tensorboard_close(self):
|
138 |
+
if self.tb is not None:
|
139 |
+
self.tb.close()
|
140 |
+
|
141 |
+
# ----- also include some small utils -----
|
142 |
+
|
143 |
+
def torch_to_numpy(*argv):
|
144 |
+
if len(argv) > 1:
|
145 |
+
data = list(argv)
|
146 |
+
else:
|
147 |
+
data = argv[0]
|
148 |
+
|
149 |
+
if isinstance(data, torch.Tensor):
|
150 |
+
return data.to('cpu').detach().numpy()
|
151 |
+
|
152 |
+
elif isinstance(data, (list, tuple)):
|
153 |
+
out = []
|
154 |
+
for di in data:
|
155 |
+
out.append(torch_to_numpy(di))
|
156 |
+
return out
|
157 |
+
|
158 |
+
elif isinstance(data, dict):
|
159 |
+
out = {}
|
160 |
+
for ni, di in data.items():
|
161 |
+
out[ni] = torch_to_numpy(di)
|
162 |
+
return out
|
163 |
+
|
164 |
+
else:
|
165 |
+
return data
|
lib/model_zoo/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.get_model import get_model
|
2 |
+
from .common.get_optimizer import get_optimizer
|
3 |
+
from .common.get_scheduler import get_scheduler
|
4 |
+
from .common.utils import get_unit
|
lib/model_zoo/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (371 Bytes). View file
|
|
lib/model_zoo/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
lib/model_zoo/__pycache__/autokl.cpython-310.pyc
ADDED
Binary file (6.08 kB). View file
|
|
lib/model_zoo/__pycache__/autokl_modules.cpython-310.pyc
ADDED
Binary file (20.3 kB). View file
|
|
lib/model_zoo/__pycache__/autokl_utils.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
lib/model_zoo/__pycache__/controlnet.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
lib/model_zoo/__pycache__/ddim.cpython-310.pyc
ADDED
Binary file (7.89 kB). View file
|
|
lib/model_zoo/__pycache__/diffusion_utils.cpython-310.pyc
ADDED
Binary file (9.53 kB). View file
|
|
lib/model_zoo/__pycache__/distributions.cpython-310.pyc
ADDED
Binary file (3.76 kB). View file
|
|
lib/model_zoo/__pycache__/ema.cpython-310.pyc
ADDED
Binary file (3.01 kB). View file
|
|
lib/model_zoo/__pycache__/openaimodel.cpython-310.pyc
ADDED
Binary file (51.1 kB). View file
|
|
lib/model_zoo/__pycache__/pfd.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
lib/model_zoo/__pycache__/seecoder.cpython-310.pyc
ADDED
Binary file (16.6 kB). View file
|
|
lib/model_zoo/__pycache__/seecoder_utils.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
lib/model_zoo/__pycache__/swin.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
lib/model_zoo/attention.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from .diffusion_utils import checkpoint
|
9 |
+
|
10 |
+
try:
|
11 |
+
import xformers
|
12 |
+
import xformers.ops
|
13 |
+
XFORMERS_IS_AVAILBLE = True
|
14 |
+
except:
|
15 |
+
XFORMERS_IS_AVAILBLE = False
|
16 |
+
|
17 |
+
|
18 |
+
def exists(val):
|
19 |
+
return val is not None
|
20 |
+
|
21 |
+
|
22 |
+
def uniq(arr):
|
23 |
+
return{el: True for el in arr}.keys()
|
24 |
+
|
25 |
+
|
26 |
+
def default(val, d):
|
27 |
+
if exists(val):
|
28 |
+
return val
|
29 |
+
return d() if isfunction(d) else d
|
30 |
+
|
31 |
+
|
32 |
+
def max_neg_value(t):
|
33 |
+
return -torch.finfo(t.dtype).max
|
34 |
+
|
35 |
+
|
36 |
+
def init_(tensor):
|
37 |
+
dim = tensor.shape[-1]
|
38 |
+
std = 1 / math.sqrt(dim)
|
39 |
+
tensor.uniform_(-std, std)
|
40 |
+
return tensor
|
41 |
+
|
42 |
+
|
43 |
+
# feedforward
|
44 |
+
class GEGLU(nn.Module):
|
45 |
+
def __init__(self, dim_in, dim_out):
|
46 |
+
super().__init__()
|
47 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
51 |
+
return x * F.gelu(gate)
|
52 |
+
|
53 |
+
|
54 |
+
class FeedForward(nn.Module):
|
55 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
56 |
+
super().__init__()
|
57 |
+
inner_dim = int(dim * mult)
|
58 |
+
dim_out = default(dim_out, dim)
|
59 |
+
project_in = nn.Sequential(
|
60 |
+
nn.Linear(dim, inner_dim),
|
61 |
+
nn.GELU()
|
62 |
+
) if not glu else GEGLU(dim, inner_dim)
|
63 |
+
|
64 |
+
self.net = nn.Sequential(
|
65 |
+
project_in,
|
66 |
+
nn.Dropout(dropout),
|
67 |
+
nn.Linear(inner_dim, dim_out)
|
68 |
+
)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return self.net(x)
|
72 |
+
|
73 |
+
|
74 |
+
def zero_module(module):
|
75 |
+
"""
|
76 |
+
Zero out the parameters of a module and return it.
|
77 |
+
"""
|
78 |
+
for p in module.parameters():
|
79 |
+
p.detach().zero_()
|
80 |
+
return module
|
81 |
+
|
82 |
+
|
83 |
+
def Normalize(in_channels):
|
84 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
85 |
+
|
86 |
+
|
87 |
+
class LinearAttention(nn.Module):
|
88 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
89 |
+
super().__init__()
|
90 |
+
self.heads = heads
|
91 |
+
hidden_dim = dim_head * heads
|
92 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
93 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
b, c, h, w = x.shape
|
97 |
+
qkv = self.to_qkv(x)
|
98 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
99 |
+
k = k.softmax(dim=-1)
|
100 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
101 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
102 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
103 |
+
return self.to_out(out)
|
104 |
+
|
105 |
+
|
106 |
+
class SpatialSelfAttention(nn.Module):
|
107 |
+
def __init__(self, in_channels):
|
108 |
+
super().__init__()
|
109 |
+
self.in_channels = in_channels
|
110 |
+
|
111 |
+
self.norm = Normalize(in_channels)
|
112 |
+
self.q = torch.nn.Conv2d(in_channels,
|
113 |
+
in_channels,
|
114 |
+
kernel_size=1,
|
115 |
+
stride=1,
|
116 |
+
padding=0)
|
117 |
+
self.k = torch.nn.Conv2d(in_channels,
|
118 |
+
in_channels,
|
119 |
+
kernel_size=1,
|
120 |
+
stride=1,
|
121 |
+
padding=0)
|
122 |
+
self.v = torch.nn.Conv2d(in_channels,
|
123 |
+
in_channels,
|
124 |
+
kernel_size=1,
|
125 |
+
stride=1,
|
126 |
+
padding=0)
|
127 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
128 |
+
in_channels,
|
129 |
+
kernel_size=1,
|
130 |
+
stride=1,
|
131 |
+
padding=0)
|
132 |
+
|
133 |
+
def forward(self, x):
|
134 |
+
h_ = x
|
135 |
+
h_ = self.norm(h_)
|
136 |
+
q = self.q(h_)
|
137 |
+
k = self.k(h_)
|
138 |
+
v = self.v(h_)
|
139 |
+
|
140 |
+
# compute attention
|
141 |
+
b,c,h,w = q.shape
|
142 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
143 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
144 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
145 |
+
|
146 |
+
w_ = w_ * (int(c)**(-0.5))
|
147 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
148 |
+
|
149 |
+
# attend to values
|
150 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
151 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
152 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
153 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
154 |
+
h_ = self.proj_out(h_)
|
155 |
+
|
156 |
+
return x+h_
|
157 |
+
|
158 |
+
|
159 |
+
class CrossAttention(nn.Module):
|
160 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
161 |
+
super().__init__()
|
162 |
+
inner_dim = dim_head * heads
|
163 |
+
context_dim = default(context_dim, query_dim)
|
164 |
+
|
165 |
+
self.scale = dim_head ** -0.5
|
166 |
+
self.heads = heads
|
167 |
+
self.inner_dim = inner_dim
|
168 |
+
|
169 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
170 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
171 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
172 |
+
|
173 |
+
self.to_out = nn.Sequential(
|
174 |
+
nn.Linear(inner_dim, query_dim),
|
175 |
+
nn.Dropout(dropout)
|
176 |
+
)
|
177 |
+
|
178 |
+
def forward(self, x, context=None, mask=None):
|
179 |
+
h = self.heads
|
180 |
+
|
181 |
+
q = self.to_q(x)
|
182 |
+
context = default(context, x)
|
183 |
+
k = self.to_k(context)
|
184 |
+
v = self.to_v(context)
|
185 |
+
|
186 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
187 |
+
|
188 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
189 |
+
|
190 |
+
if exists(mask):
|
191 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
192 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
193 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
194 |
+
sim.masked_fill_(~mask, max_neg_value)
|
195 |
+
|
196 |
+
# attention, what we cannot get enough of
|
197 |
+
attn = sim.softmax(dim=-1)
|
198 |
+
|
199 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
200 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
201 |
+
return self.to_out(out)
|
202 |
+
|
203 |
+
def forward_next(self, x, context=None, mask=None):
|
204 |
+
assert mask is None, 'not supported yet'
|
205 |
+
x0 = rearrange(x, 'b n c -> n b c')
|
206 |
+
if context is not None:
|
207 |
+
c0 = rearrange(context, 'b n c -> n b c')
|
208 |
+
else:
|
209 |
+
c0 = x0
|
210 |
+
r, _ = F.multi_head_attention_forward(
|
211 |
+
x0, c0, c0,
|
212 |
+
embed_dim_to_check = self.inner_dim,
|
213 |
+
num_heads = self.heads,
|
214 |
+
in_proj_weight = None, in_proj_bias = None,
|
215 |
+
bias_k = None, bias_v = None,
|
216 |
+
add_zero_attn = False, dropout_p = 0,
|
217 |
+
out_proj_weight = self.to_out[0].weight,
|
218 |
+
out_proj_bias = self.to_out[0].bias,
|
219 |
+
use_separate_proj_weight = True,
|
220 |
+
q_proj_weight = self.to_q.weight,
|
221 |
+
k_proj_weight = self.to_k.weight,
|
222 |
+
v_proj_weight = self.to_v.weight,)
|
223 |
+
r = rearrange(r, 'n b c -> b n c')
|
224 |
+
r = self.to_out[1](r) # dropout
|
225 |
+
return r
|
226 |
+
|
227 |
+
|
228 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
229 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
230 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
231 |
+
super().__init__()
|
232 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
233 |
+
f"{heads} heads.")
|
234 |
+
inner_dim = dim_head * heads
|
235 |
+
context_dim = default(context_dim, query_dim)
|
236 |
+
|
237 |
+
self.heads = heads
|
238 |
+
self.dim_head = dim_head
|
239 |
+
|
240 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
241 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
242 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
243 |
+
|
244 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
245 |
+
self.attention_op: Optional[Any] = None
|
246 |
+
|
247 |
+
def forward(self, x, context=None, mask=None):
|
248 |
+
q = self.to_q(x)
|
249 |
+
context = default(context, x)
|
250 |
+
k = self.to_k(context)
|
251 |
+
v = self.to_v(context)
|
252 |
+
|
253 |
+
b, _, _ = q.shape
|
254 |
+
q, k, v = map(
|
255 |
+
lambda t: t.unsqueeze(3)
|
256 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
257 |
+
.permute(0, 2, 1, 3)
|
258 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
259 |
+
.contiguous(),
|
260 |
+
(q, k, v),
|
261 |
+
)
|
262 |
+
|
263 |
+
# actually compute the attention, what we cannot get enough of
|
264 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
265 |
+
|
266 |
+
if exists(mask):
|
267 |
+
raise NotImplementedError
|
268 |
+
out = (
|
269 |
+
out.unsqueeze(0)
|
270 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
271 |
+
.permute(0, 2, 1, 3)
|
272 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
273 |
+
)
|
274 |
+
return self.to_out(out)
|
275 |
+
|
276 |
+
|
277 |
+
class BasicTransformerBlock(nn.Module):
|
278 |
+
ATTENTION_MODES = {
|
279 |
+
"softmax": CrossAttention, # vanilla attention
|
280 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
281 |
+
}
|
282 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
283 |
+
disable_self_attn=False):
|
284 |
+
super().__init__()
|
285 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
286 |
+
assert attn_mode in self.ATTENTION_MODES
|
287 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
288 |
+
self.disable_self_attn = disable_self_attn
|
289 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
290 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
291 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
292 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
293 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
294 |
+
self.norm1 = nn.LayerNorm(dim)
|
295 |
+
self.norm2 = nn.LayerNorm(dim)
|
296 |
+
self.norm3 = nn.LayerNorm(dim)
|
297 |
+
self.checkpoint = checkpoint
|
298 |
+
|
299 |
+
def forward(self, x, context=None):
|
300 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
301 |
+
|
302 |
+
def _forward(self, x, context=None):
|
303 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
304 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
305 |
+
x = self.ff(self.norm3(x)) + x
|
306 |
+
return x
|
307 |
+
|
308 |
+
|
309 |
+
class SpatialTransformer(nn.Module):
|
310 |
+
"""
|
311 |
+
Transformer block for image-like data.
|
312 |
+
First, project the input (aka embedding)
|
313 |
+
and reshape to b, t, d.
|
314 |
+
Then apply standard transformer action.
|
315 |
+
Finally, reshape to image
|
316 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
317 |
+
"""
|
318 |
+
def __init__(self, in_channels, n_heads, d_head,
|
319 |
+
depth=1, dropout=0., context_dim=None,
|
320 |
+
disable_self_attn=False, use_linear=False,
|
321 |
+
use_checkpoint=True):
|
322 |
+
super().__init__()
|
323 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
324 |
+
context_dim = [context_dim]
|
325 |
+
self.in_channels = in_channels
|
326 |
+
inner_dim = n_heads * d_head
|
327 |
+
self.norm = Normalize(in_channels)
|
328 |
+
if not use_linear:
|
329 |
+
self.proj_in = nn.Conv2d(in_channels,
|
330 |
+
inner_dim,
|
331 |
+
kernel_size=1,
|
332 |
+
stride=1,
|
333 |
+
padding=0)
|
334 |
+
else:
|
335 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
336 |
+
|
337 |
+
self.transformer_blocks = nn.ModuleList(
|
338 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
339 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
340 |
+
for d in range(depth)]
|
341 |
+
)
|
342 |
+
if not use_linear:
|
343 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
344 |
+
in_channels,
|
345 |
+
kernel_size=1,
|
346 |
+
stride=1,
|
347 |
+
padding=0))
|
348 |
+
else:
|
349 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
350 |
+
self.use_linear = use_linear
|
351 |
+
|
352 |
+
def forward(self, x, context=None):
|
353 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
354 |
+
if not isinstance(context, list):
|
355 |
+
context = [context]
|
356 |
+
b, c, h, w = x.shape
|
357 |
+
x_in = x
|
358 |
+
x = self.norm(x)
|
359 |
+
if not self.use_linear:
|
360 |
+
x = self.proj_in(x)
|
361 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
362 |
+
if self.use_linear:
|
363 |
+
x = self.proj_in(x)
|
364 |
+
for i, block in enumerate(self.transformer_blocks):
|
365 |
+
x = block(x, context=context[i])
|
366 |
+
if self.use_linear:
|
367 |
+
x = self.proj_out(x)
|
368 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
369 |
+
if not self.use_linear:
|
370 |
+
x = self.proj_out(x)
|
371 |
+
return x + x_in
|
372 |
+
|
373 |
+
|
374 |
+
##########################
|
375 |
+
# transformer no context #
|
376 |
+
##########################
|
377 |
+
|
378 |
+
class BasicTransformerBlockNoContext(nn.Module):
|
379 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., gated_ff=True, checkpoint=True):
|
380 |
+
super().__init__()
|
381 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
|
382 |
+
dropout=dropout, context_dim=None)
|
383 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
384 |
+
self.attn2 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
|
385 |
+
dropout=dropout, context_dim=None)
|
386 |
+
self.norm1 = nn.LayerNorm(dim)
|
387 |
+
self.norm2 = nn.LayerNorm(dim)
|
388 |
+
self.norm3 = nn.LayerNorm(dim)
|
389 |
+
self.checkpoint = checkpoint
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
|
393 |
+
|
394 |
+
def _forward(self, x):
|
395 |
+
x = self.attn1(self.norm1(x)) + x
|
396 |
+
x = self.attn2(self.norm2(x)) + x
|
397 |
+
x = self.ff(self.norm3(x)) + x
|
398 |
+
return x
|
399 |
+
|
400 |
+
class SpatialTransformerNoContext(nn.Module):
|
401 |
+
"""
|
402 |
+
Transformer block for image-like data.
|
403 |
+
First, project the input (aka embedding)
|
404 |
+
and reshape to b, t, d.
|
405 |
+
Then apply standard transformer action.
|
406 |
+
Finally, reshape to image
|
407 |
+
"""
|
408 |
+
def __init__(self, in_channels, n_heads, d_head,
|
409 |
+
depth=1, dropout=0.,):
|
410 |
+
super().__init__()
|
411 |
+
self.in_channels = in_channels
|
412 |
+
inner_dim = n_heads * d_head
|
413 |
+
self.norm = Normalize(in_channels)
|
414 |
+
|
415 |
+
self.proj_in = nn.Conv2d(in_channels,
|
416 |
+
inner_dim,
|
417 |
+
kernel_size=1,
|
418 |
+
stride=1,
|
419 |
+
padding=0)
|
420 |
+
|
421 |
+
self.transformer_blocks = nn.ModuleList(
|
422 |
+
[BasicTransformerBlockNoContext(inner_dim, n_heads, d_head, dropout=dropout)
|
423 |
+
for d in range(depth)]
|
424 |
+
)
|
425 |
+
|
426 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
427 |
+
in_channels,
|
428 |
+
kernel_size=1,
|
429 |
+
stride=1,
|
430 |
+
padding=0))
|
431 |
+
|
432 |
+
def forward(self, x):
|
433 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
434 |
+
b, c, h, w = x.shape
|
435 |
+
x_in = x
|
436 |
+
x = self.norm(x)
|
437 |
+
x = self.proj_in(x)
|
438 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
439 |
+
for block in self.transformer_blocks:
|
440 |
+
x = block(x)
|
441 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
442 |
+
x = self.proj_out(x)
|
443 |
+
return x + x_in
|
444 |
+
|
445 |
+
|
446 |
+
#######################################
|
447 |
+
# Spatial Transformer with Two Branch #
|
448 |
+
#######################################
|
449 |
+
|
450 |
+
class DualSpatialTransformer(nn.Module):
|
451 |
+
def __init__(self, in_channels, n_heads, d_head,
|
452 |
+
depth=1, dropout=0., context_dim=None,
|
453 |
+
disable_self_attn=False):
|
454 |
+
super().__init__()
|
455 |
+
self.in_channels = in_channels
|
456 |
+
inner_dim = n_heads * d_head
|
457 |
+
|
458 |
+
# First crossattn
|
459 |
+
self.norm_0 = Normalize(in_channels)
|
460 |
+
self.proj_in_0 = nn.Conv2d(
|
461 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
462 |
+
self.transformer_blocks_0 = nn.ModuleList(
|
463 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
464 |
+
disable_self_attn=disable_self_attn)
|
465 |
+
for d in range(depth)]
|
466 |
+
)
|
467 |
+
self.proj_out_0 = zero_module(nn.Conv2d(
|
468 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
469 |
+
|
470 |
+
# Second crossattn
|
471 |
+
self.norm_1 = Normalize(in_channels)
|
472 |
+
self.proj_in_1 = nn.Conv2d(
|
473 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
474 |
+
self.transformer_blocks_1 = nn.ModuleList(
|
475 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
476 |
+
disable_self_attn=disable_self_attn)
|
477 |
+
for d in range(depth)]
|
478 |
+
)
|
479 |
+
self.proj_out_1 = zero_module(nn.Conv2d(
|
480 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
481 |
+
|
482 |
+
def forward(self, x, context=None, which=None):
|
483 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
484 |
+
b, c, h, w = x.shape
|
485 |
+
x_in = x
|
486 |
+
if which==0:
|
487 |
+
norm, proj_in, blocks, proj_out = \
|
488 |
+
self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
489 |
+
elif which==1:
|
490 |
+
norm, proj_in, blocks, proj_out = \
|
491 |
+
self.norm_1, self.proj_in_1, self.transformer_blocks_1, self.proj_out_1
|
492 |
+
else:
|
493 |
+
# assert False, 'DualSpatialTransformer forward with a invalid which branch!'
|
494 |
+
# import numpy.random as npr
|
495 |
+
# rwhich = 0 if npr.rand() < which else 1
|
496 |
+
# context = context[rwhich]
|
497 |
+
# if rwhich==0:
|
498 |
+
# norm, proj_in, blocks, proj_out = \
|
499 |
+
# self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
500 |
+
# elif rwhich==1:
|
501 |
+
# norm, proj_in, blocks, proj_out = \
|
502 |
+
# self.norm_1, self.proj_in_1, self.transformer_blocks_1, self.proj_out_1
|
503 |
+
|
504 |
+
# import numpy.random as npr
|
505 |
+
# rwhich = 0 if npr.rand() < 0.33 else 1
|
506 |
+
# if rwhich==0:
|
507 |
+
# context = context[rwhich]
|
508 |
+
# norm, proj_in, blocks, proj_out = \
|
509 |
+
# self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
510 |
+
# else:
|
511 |
+
|
512 |
+
norm, proj_in, blocks, proj_out = \
|
513 |
+
self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
514 |
+
x0 = norm(x)
|
515 |
+
x0 = proj_in(x0)
|
516 |
+
x0 = rearrange(x0, 'b c h w -> b (h w) c').contiguous()
|
517 |
+
for block in blocks:
|
518 |
+
x0 = block(x0, context=context[0])
|
519 |
+
x0 = rearrange(x0, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
520 |
+
x0 = proj_out(x0)
|
521 |
+
|
522 |
+
norm, proj_in, blocks, proj_out = \
|
523 |
+
self.norm_1, self.proj_in_1, self.transformer_blocks_1, self.proj_out_1
|
524 |
+
x1 = norm(x)
|
525 |
+
x1 = proj_in(x1)
|
526 |
+
x1 = rearrange(x1, 'b c h w -> b (h w) c').contiguous()
|
527 |
+
for block in blocks:
|
528 |
+
x1 = block(x1, context=context[1])
|
529 |
+
x1 = rearrange(x1, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
530 |
+
x1 = proj_out(x1)
|
531 |
+
return x0*which + x1*(1-which) + x_in
|
532 |
+
|
533 |
+
x = norm(x)
|
534 |
+
x = proj_in(x)
|
535 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
536 |
+
for block in blocks:
|
537 |
+
x = block(x, context=context)
|
538 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
539 |
+
x = proj_out(x)
|
540 |
+
return x + x_in
|
lib/model_zoo/autokl.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from lib.model_zoo.common.get_model import get_model, register
|
6 |
+
|
7 |
+
# from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
8 |
+
|
9 |
+
from .autokl_modules import Encoder, Decoder
|
10 |
+
from .distributions import DiagonalGaussianDistribution
|
11 |
+
|
12 |
+
from .autokl_utils import LPIPSWithDiscriminator
|
13 |
+
|
14 |
+
@register('autoencoderkl')
|
15 |
+
class AutoencoderKL(nn.Module):
|
16 |
+
def __init__(self,
|
17 |
+
ddconfig,
|
18 |
+
lossconfig,
|
19 |
+
embed_dim,):
|
20 |
+
super().__init__()
|
21 |
+
self.encoder = Encoder(**ddconfig)
|
22 |
+
self.decoder = Decoder(**ddconfig)
|
23 |
+
if lossconfig is not None:
|
24 |
+
self.loss = LPIPSWithDiscriminator(**lossconfig)
|
25 |
+
assert ddconfig["double_z"]
|
26 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
27 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
28 |
+
self.embed_dim = embed_dim
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def encode(self, x, out_posterior=False):
|
32 |
+
return self.encode_trainable(x, out_posterior)
|
33 |
+
|
34 |
+
def encode_trainable(self, x, out_posterior=False):
|
35 |
+
x = x*2-1
|
36 |
+
h = self.encoder(x)
|
37 |
+
moments = self.quant_conv(h)
|
38 |
+
posterior = DiagonalGaussianDistribution(moments)
|
39 |
+
if out_posterior:
|
40 |
+
return posterior
|
41 |
+
else:
|
42 |
+
return posterior.sample()
|
43 |
+
|
44 |
+
@torch.no_grad()
|
45 |
+
def decode(self, z):
|
46 |
+
dec = self.decode_trainable(z)
|
47 |
+
dec = torch.clamp(dec, 0, 1)
|
48 |
+
return dec
|
49 |
+
|
50 |
+
def decode_trainable(self, z):
|
51 |
+
z = self.post_quant_conv(z)
|
52 |
+
dec = self.decoder(z)
|
53 |
+
dec = (dec+1)/2
|
54 |
+
return dec
|
55 |
+
|
56 |
+
def apply_model(self, input, sample_posterior=True):
|
57 |
+
posterior = self.encode_trainable(input, out_posterior=True)
|
58 |
+
if sample_posterior:
|
59 |
+
z = posterior.sample()
|
60 |
+
else:
|
61 |
+
z = posterior.mode()
|
62 |
+
dec = self.decode_trainable(z)
|
63 |
+
return dec, posterior
|
64 |
+
|
65 |
+
def get_input(self, batch, k):
|
66 |
+
x = batch[k]
|
67 |
+
if len(x.shape) == 3:
|
68 |
+
x = x[..., None]
|
69 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
70 |
+
return x
|
71 |
+
|
72 |
+
def forward(self, x, optimizer_idx, global_step):
|
73 |
+
reconstructions, posterior = self.apply_model(x)
|
74 |
+
|
75 |
+
if optimizer_idx == 0:
|
76 |
+
# train encoder+decoder+logvar
|
77 |
+
aeloss, log_dict_ae = self.loss(x, reconstructions, posterior, optimizer_idx, global_step=global_step,
|
78 |
+
last_layer=self.get_last_layer(), split="train")
|
79 |
+
return aeloss, log_dict_ae
|
80 |
+
|
81 |
+
if optimizer_idx == 1:
|
82 |
+
# train the discriminator
|
83 |
+
discloss, log_dict_disc = self.loss(x, reconstructions, posterior, optimizer_idx, global_step=global_step,
|
84 |
+
last_layer=self.get_last_layer(), split="train")
|
85 |
+
|
86 |
+
return discloss, log_dict_disc
|
87 |
+
|
88 |
+
def validation_step(self, batch, batch_idx):
|
89 |
+
inputs = self.get_input(batch, self.image_key)
|
90 |
+
reconstructions, posterior = self(inputs)
|
91 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
92 |
+
last_layer=self.get_last_layer(), split="val")
|
93 |
+
|
94 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
95 |
+
last_layer=self.get_last_layer(), split="val")
|
96 |
+
|
97 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
98 |
+
self.log_dict(log_dict_ae)
|
99 |
+
self.log_dict(log_dict_disc)
|
100 |
+
return self.log_dict
|
101 |
+
|
102 |
+
def configure_optimizers(self):
|
103 |
+
lr = self.learning_rate
|
104 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
105 |
+
list(self.decoder.parameters())+
|
106 |
+
list(self.quant_conv.parameters())+
|
107 |
+
list(self.post_quant_conv.parameters()),
|
108 |
+
lr=lr, betas=(0.5, 0.9))
|
109 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
110 |
+
lr=lr, betas=(0.5, 0.9))
|
111 |
+
return [opt_ae, opt_disc], []
|
112 |
+
|
113 |
+
def get_last_layer(self):
|
114 |
+
return self.decoder.conv_out.weight
|
115 |
+
|
116 |
+
@torch.no_grad()
|
117 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
118 |
+
log = dict()
|
119 |
+
x = self.get_input(batch, self.image_key)
|
120 |
+
x = x.to(self.device)
|
121 |
+
if not only_inputs:
|
122 |
+
xrec, posterior = self(x)
|
123 |
+
if x.shape[1] > 3:
|
124 |
+
# colorize with random projection
|
125 |
+
assert xrec.shape[1] > 3
|
126 |
+
x = self.to_rgb(x)
|
127 |
+
xrec = self.to_rgb(xrec)
|
128 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
129 |
+
log["reconstructions"] = xrec
|
130 |
+
log["inputs"] = x
|
131 |
+
return log
|
132 |
+
|
133 |
+
def to_rgb(self, x):
|
134 |
+
assert self.image_key == "segmentation"
|
135 |
+
if not hasattr(self, "colorize"):
|
136 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
137 |
+
x = F.conv2d(x, weight=self.colorize)
|
138 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
139 |
+
return x
|
140 |
+
|
141 |
+
@register('autoencoderkl_customnorm')
|
142 |
+
class AutoencoderKL_CustomNorm(AutoencoderKL):
|
143 |
+
def __init__(self, *args, **kwargs):
|
144 |
+
super().__init__(*args, **kwargs)
|
145 |
+
self.mean = torch.Tensor([0.48145466, 0.4578275, 0.40821073])
|
146 |
+
self.std = torch.Tensor([0.26862954, 0.26130258, 0.27577711])
|
147 |
+
|
148 |
+
def encode_trainable(self, x, out_posterior=False):
|
149 |
+
m = self.mean[None, :, None, None].to(z.device).to(z.dtype)
|
150 |
+
s = self.std[None, :, None, None].to(z.device).to(z.dtype)
|
151 |
+
x = (x-m)/s
|
152 |
+
h = self.encoder(x)
|
153 |
+
moments = self.quant_conv(h)
|
154 |
+
posterior = DiagonalGaussianDistribution(moments)
|
155 |
+
if out_posterior:
|
156 |
+
return posterior
|
157 |
+
else:
|
158 |
+
return posterior.sample()
|
159 |
+
|
160 |
+
def decode_trainable(self, z):
|
161 |
+
m = self.mean[None, :, None, None].to(z.device).to(z.dtype)
|
162 |
+
s = self.std[None, :, None, None].to(z.device).to(z.dtype)
|
163 |
+
z = self.post_quant_conv(z)
|
164 |
+
dec = self.decoder(z)
|
165 |
+
dec = (dec+1)/2
|
166 |
+
return dec
|
lib/model_zoo/autokl_modules.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
# from .diffusion_utils import instantiate_from_config
|
9 |
+
from .attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == "none":
|
211 |
+
return nn.Identity(in_channels)
|
212 |
+
else:
|
213 |
+
return LinAttnBlock(in_channels)
|
214 |
+
|
215 |
+
|
216 |
+
class Model(nn.Module):
|
217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
+
super().__init__()
|
221 |
+
if use_linear_attn: attn_type = "linear"
|
222 |
+
self.ch = ch
|
223 |
+
self.temb_ch = self.ch*4
|
224 |
+
self.num_resolutions = len(ch_mult)
|
225 |
+
self.num_res_blocks = num_res_blocks
|
226 |
+
self.resolution = resolution
|
227 |
+
self.in_channels = in_channels
|
228 |
+
|
229 |
+
self.use_timestep = use_timestep
|
230 |
+
if self.use_timestep:
|
231 |
+
# timestep embedding
|
232 |
+
self.temb = nn.Module()
|
233 |
+
self.temb.dense = nn.ModuleList([
|
234 |
+
torch.nn.Linear(self.ch,
|
235 |
+
self.temb_ch),
|
236 |
+
torch.nn.Linear(self.temb_ch,
|
237 |
+
self.temb_ch),
|
238 |
+
])
|
239 |
+
|
240 |
+
# downsampling
|
241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
+
self.ch,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
padding=1)
|
246 |
+
|
247 |
+
curr_res = resolution
|
248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
+
self.down = nn.ModuleList()
|
250 |
+
for i_level in range(self.num_resolutions):
|
251 |
+
block = nn.ModuleList()
|
252 |
+
attn = nn.ModuleList()
|
253 |
+
block_in = ch*in_ch_mult[i_level]
|
254 |
+
block_out = ch*ch_mult[i_level]
|
255 |
+
for i_block in range(self.num_res_blocks):
|
256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
257 |
+
out_channels=block_out,
|
258 |
+
temb_channels=self.temb_ch,
|
259 |
+
dropout=dropout))
|
260 |
+
block_in = block_out
|
261 |
+
if curr_res in attn_resolutions:
|
262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
+
down = nn.Module()
|
264 |
+
down.block = block
|
265 |
+
down.attn = attn
|
266 |
+
if i_level != self.num_resolutions-1:
|
267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
+
curr_res = curr_res // 2
|
269 |
+
self.down.append(down)
|
270 |
+
|
271 |
+
# middle
|
272 |
+
self.mid = nn.Module()
|
273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
+
out_channels=block_in,
|
275 |
+
temb_channels=self.temb_ch,
|
276 |
+
dropout=dropout)
|
277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
|
283 |
+
# upsampling
|
284 |
+
self.up = nn.ModuleList()
|
285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
286 |
+
block = nn.ModuleList()
|
287 |
+
attn = nn.ModuleList()
|
288 |
+
block_out = ch*ch_mult[i_level]
|
289 |
+
skip_in = ch*ch_mult[i_level]
|
290 |
+
for i_block in range(self.num_res_blocks+1):
|
291 |
+
if i_block == self.num_res_blocks:
|
292 |
+
skip_in = ch*in_ch_mult[i_level]
|
293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
+
out_channels=block_out,
|
295 |
+
temb_channels=self.temb_ch,
|
296 |
+
dropout=dropout))
|
297 |
+
block_in = block_out
|
298 |
+
if curr_res in attn_resolutions:
|
299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
+
up = nn.Module()
|
301 |
+
up.block = block
|
302 |
+
up.attn = attn
|
303 |
+
if i_level != 0:
|
304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
+
curr_res = curr_res * 2
|
306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
307 |
+
|
308 |
+
# end
|
309 |
+
self.norm_out = Normalize(block_in)
|
310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
+
out_ch,
|
312 |
+
kernel_size=3,
|
313 |
+
stride=1,
|
314 |
+
padding=1)
|
315 |
+
|
316 |
+
def forward(self, x, t=None, context=None):
|
317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
+
if context is not None:
|
319 |
+
# assume aligned context, cat along channel axis
|
320 |
+
x = torch.cat((x, context), dim=1)
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
assert t is not None
|
324 |
+
temb = get_timestep_embedding(t, self.ch)
|
325 |
+
temb = self.temb.dense[0](temb)
|
326 |
+
temb = nonlinearity(temb)
|
327 |
+
temb = self.temb.dense[1](temb)
|
328 |
+
else:
|
329 |
+
temb = None
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
hs = [self.conv_in(x)]
|
333 |
+
for i_level in range(self.num_resolutions):
|
334 |
+
for i_block in range(self.num_res_blocks):
|
335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
+
if len(self.down[i_level].attn) > 0:
|
337 |
+
h = self.down[i_level].attn[i_block](h)
|
338 |
+
hs.append(h)
|
339 |
+
if i_level != self.num_resolutions-1:
|
340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
+
|
342 |
+
# middle
|
343 |
+
h = hs[-1]
|
344 |
+
h = self.mid.block_1(h, temb)
|
345 |
+
h = self.mid.attn_1(h)
|
346 |
+
h = self.mid.block_2(h, temb)
|
347 |
+
|
348 |
+
# upsampling
|
349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
350 |
+
for i_block in range(self.num_res_blocks+1):
|
351 |
+
h = self.up[i_level].block[i_block](
|
352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
+
if len(self.up[i_level].attn) > 0:
|
354 |
+
h = self.up[i_level].attn[i_block](h)
|
355 |
+
if i_level != 0:
|
356 |
+
h = self.up[i_level].upsample(h)
|
357 |
+
|
358 |
+
# end
|
359 |
+
h = self.norm_out(h)
|
360 |
+
h = nonlinearity(h)
|
361 |
+
h = self.conv_out(h)
|
362 |
+
return h
|
363 |
+
|
364 |
+
def get_last_layer(self):
|
365 |
+
return self.conv_out.weight
|
366 |
+
|
367 |
+
|
368 |
+
class Encoder(nn.Module):
|
369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
+
**ignore_kwargs):
|
373 |
+
super().__init__()
|
374 |
+
if use_linear_attn: attn_type = "linear"
|
375 |
+
self.ch = ch
|
376 |
+
self.temb_ch = 0
|
377 |
+
self.num_resolutions = len(ch_mult)
|
378 |
+
self.num_res_blocks = num_res_blocks
|
379 |
+
self.resolution = resolution
|
380 |
+
self.in_channels = in_channels
|
381 |
+
|
382 |
+
# downsampling
|
383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
+
self.ch,
|
385 |
+
kernel_size=3,
|
386 |
+
stride=1,
|
387 |
+
padding=1)
|
388 |
+
|
389 |
+
curr_res = resolution
|
390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
+
self.in_ch_mult = in_ch_mult
|
392 |
+
self.down = nn.ModuleList()
|
393 |
+
for i_level in range(self.num_resolutions):
|
394 |
+
block = nn.ModuleList()
|
395 |
+
attn = nn.ModuleList()
|
396 |
+
block_in = ch*in_ch_mult[i_level]
|
397 |
+
block_out = ch*ch_mult[i_level]
|
398 |
+
for i_block in range(self.num_res_blocks):
|
399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
400 |
+
out_channels=block_out,
|
401 |
+
temb_channels=self.temb_ch,
|
402 |
+
dropout=dropout))
|
403 |
+
block_in = block_out
|
404 |
+
if curr_res in attn_resolutions:
|
405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
406 |
+
down = nn.Module()
|
407 |
+
down.block = block
|
408 |
+
down.attn = attn
|
409 |
+
if i_level != self.num_resolutions-1:
|
410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
+
curr_res = curr_res // 2
|
412 |
+
self.down.append(down)
|
413 |
+
|
414 |
+
# middle
|
415 |
+
self.mid = nn.Module()
|
416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
+
out_channels=block_in,
|
418 |
+
temb_channels=self.temb_ch,
|
419 |
+
dropout=dropout)
|
420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
|
426 |
+
# end
|
427 |
+
self.norm_out = Normalize(block_in)
|
428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
+
2*z_channels if double_z else z_channels,
|
430 |
+
kernel_size=3,
|
431 |
+
stride=1,
|
432 |
+
padding=1)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# timestep embedding
|
436 |
+
temb = None
|
437 |
+
|
438 |
+
# downsampling
|
439 |
+
hs = [self.conv_in(x)]
|
440 |
+
for i_level in range(self.num_resolutions):
|
441 |
+
for i_block in range(self.num_res_blocks):
|
442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
+
if len(self.down[i_level].attn) > 0:
|
444 |
+
h = self.down[i_level].attn[i_block](h)
|
445 |
+
hs.append(h)
|
446 |
+
if i_level != self.num_resolutions-1:
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
|
449 |
+
# middle
|
450 |
+
h = hs[-1]
|
451 |
+
h = self.mid.block_1(h, temb)
|
452 |
+
h = self.mid.attn_1(h)
|
453 |
+
h = self.mid.block_2(h, temb)
|
454 |
+
|
455 |
+
# end
|
456 |
+
h = self.norm_out(h)
|
457 |
+
h = nonlinearity(h)
|
458 |
+
h = self.conv_out(h)
|
459 |
+
return h
|
460 |
+
|
461 |
+
|
462 |
+
class Decoder(nn.Module):
|
463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
+
attn_type="vanilla", **ignorekwargs):
|
467 |
+
super().__init__()
|
468 |
+
if use_linear_attn: attn_type = "linear"
|
469 |
+
self.ch = ch
|
470 |
+
self.temb_ch = 0
|
471 |
+
self.num_resolutions = len(ch_mult)
|
472 |
+
self.num_res_blocks = num_res_blocks
|
473 |
+
self.resolution = resolution
|
474 |
+
self.in_channels = in_channels
|
475 |
+
self.give_pre_end = give_pre_end
|
476 |
+
self.tanh_out = tanh_out
|
477 |
+
|
478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
+
self.z_shape, np.prod(self.z_shape)))
|
485 |
+
|
486 |
+
# z to block_in
|
487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
+
block_in,
|
489 |
+
kernel_size=3,
|
490 |
+
stride=1,
|
491 |
+
padding=1)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
+
out_channels=block_in,
|
497 |
+
temb_channels=self.temb_ch,
|
498 |
+
dropout=dropout)
|
499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
self.up = nn.ModuleList()
|
507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
508 |
+
block = nn.ModuleList()
|
509 |
+
attn = nn.ModuleList()
|
510 |
+
block_out = ch*ch_mult[i_level]
|
511 |
+
for i_block in range(self.num_res_blocks+1):
|
512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout))
|
516 |
+
block_in = block_out
|
517 |
+
if curr_res in attn_resolutions:
|
518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
+
up = nn.Module()
|
520 |
+
up.block = block
|
521 |
+
up.attn = attn
|
522 |
+
if i_level != 0:
|
523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
+
curr_res = curr_res * 2
|
525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
526 |
+
|
527 |
+
# end
|
528 |
+
self.norm_out = Normalize(block_in)
|
529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
+
out_ch,
|
531 |
+
kernel_size=3,
|
532 |
+
stride=1,
|
533 |
+
padding=1)
|
534 |
+
|
535 |
+
def forward(self, z):
|
536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
+
self.last_z_shape = z.shape
|
538 |
+
|
539 |
+
# timestep embedding
|
540 |
+
temb = None
|
541 |
+
|
542 |
+
# z to block_in
|
543 |
+
h = self.conv_in(z)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
h = self.mid.block_1(h, temb)
|
547 |
+
h = self.mid.attn_1(h)
|
548 |
+
h = self.mid.block_2(h, temb)
|
549 |
+
|
550 |
+
# upsampling
|
551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
552 |
+
for i_block in range(self.num_res_blocks+1):
|
553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
554 |
+
if len(self.up[i_level].attn) > 0:
|
555 |
+
h = self.up[i_level].attn[i_block](h)
|
556 |
+
if i_level != 0:
|
557 |
+
h = self.up[i_level].upsample(h)
|
558 |
+
|
559 |
+
# end
|
560 |
+
if self.give_pre_end:
|
561 |
+
return h
|
562 |
+
|
563 |
+
h = self.norm_out(h)
|
564 |
+
h = nonlinearity(h)
|
565 |
+
h = self.conv_out(h)
|
566 |
+
if self.tanh_out:
|
567 |
+
h = torch.tanh(h)
|
568 |
+
return h
|
569 |
+
|
570 |
+
|
571 |
+
class SimpleDecoder(nn.Module):
|
572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
+
super().__init__()
|
574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
+
ResnetBlock(in_channels=in_channels,
|
576 |
+
out_channels=2 * in_channels,
|
577 |
+
temb_channels=0, dropout=0.0),
|
578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
579 |
+
out_channels=4 * in_channels,
|
580 |
+
temb_channels=0, dropout=0.0),
|
581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
582 |
+
out_channels=2 * in_channels,
|
583 |
+
temb_channels=0, dropout=0.0),
|
584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
+
Upsample(in_channels, with_conv=True)])
|
586 |
+
# end
|
587 |
+
self.norm_out = Normalize(in_channels)
|
588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=3,
|
591 |
+
stride=1,
|
592 |
+
padding=1)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
for i, layer in enumerate(self.model):
|
596 |
+
if i in [1,2,3]:
|
597 |
+
x = layer(x, None)
|
598 |
+
else:
|
599 |
+
x = layer(x)
|
600 |
+
|
601 |
+
h = self.norm_out(x)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
x = self.conv_out(h)
|
604 |
+
return x
|
605 |
+
|
606 |
+
|
607 |
+
class UpsampleDecoder(nn.Module):
|
608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
+
ch_mult=(2,2), dropout=0.0):
|
610 |
+
super().__init__()
|
611 |
+
# upsampling
|
612 |
+
self.temb_ch = 0
|
613 |
+
self.num_resolutions = len(ch_mult)
|
614 |
+
self.num_res_blocks = num_res_blocks
|
615 |
+
block_in = in_channels
|
616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
+
self.res_blocks = nn.ModuleList()
|
618 |
+
self.upsample_blocks = nn.ModuleList()
|
619 |
+
for i_level in range(self.num_resolutions):
|
620 |
+
res_block = []
|
621 |
+
block_out = ch * ch_mult[i_level]
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
+
out_channels=block_out,
|
625 |
+
temb_channels=self.temb_ch,
|
626 |
+
dropout=dropout))
|
627 |
+
block_in = block_out
|
628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
+
if i_level != self.num_resolutions - 1:
|
630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
+
curr_res = curr_res * 2
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_channels,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, x):
|
642 |
+
# upsampling
|
643 |
+
h = x
|
644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
+
for i_block in range(self.num_res_blocks + 1):
|
646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
+
if i_level != self.num_resolutions - 1:
|
648 |
+
h = self.upsample_blocks[k](h)
|
649 |
+
h = self.norm_out(h)
|
650 |
+
h = nonlinearity(h)
|
651 |
+
h = self.conv_out(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class LatentRescaler(nn.Module):
|
656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
+
super().__init__()
|
658 |
+
# residual block, interpolate, residual block
|
659 |
+
self.factor = factor
|
660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
661 |
+
mid_channels,
|
662 |
+
kernel_size=3,
|
663 |
+
stride=1,
|
664 |
+
padding=1)
|
665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
+
out_channels=mid_channels,
|
667 |
+
temb_channels=0,
|
668 |
+
dropout=0.0) for _ in range(depth)])
|
669 |
+
self.attn = AttnBlock(mid_channels)
|
670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
|
675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
+
out_channels,
|
677 |
+
kernel_size=1,
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, x):
|
681 |
+
x = self.conv_in(x)
|
682 |
+
for block in self.res_block1:
|
683 |
+
x = block(x, None)
|
684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
+
x = self.attn(x)
|
686 |
+
for block in self.res_block2:
|
687 |
+
x = block(x, None)
|
688 |
+
x = self.conv_out(x)
|
689 |
+
return x
|
690 |
+
|
691 |
+
|
692 |
+
class MergedRescaleEncoder(nn.Module):
|
693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
+
super().__init__()
|
697 |
+
intermediate_chn = ch * ch_mult[-1]
|
698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
+
out_ch=None)
|
702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.encoder(x)
|
707 |
+
x = self.rescaler(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class MergedRescaleDecoder(nn.Module):
|
712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
+
super().__init__()
|
715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
+
|
722 |
+
def forward(self, x):
|
723 |
+
x = self.rescaler(x)
|
724 |
+
x = self.decoder(x)
|
725 |
+
return x
|
726 |
+
|
727 |
+
|
728 |
+
class Upsampler(nn.Module):
|
729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
+
super().__init__()
|
731 |
+
assert out_size >= in_size
|
732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
+
factor_up = 1.+ (out_size % in_size)
|
734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
+
out_channels=in_channels)
|
737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
x = self.rescaler(x)
|
743 |
+
x = self.decoder(x)
|
744 |
+
return x
|
745 |
+
|
746 |
+
|
747 |
+
class Resize(nn.Module):
|
748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
+
super().__init__()
|
750 |
+
self.with_conv = learned
|
751 |
+
self.mode = mode
|
752 |
+
if self.with_conv:
|
753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
+
raise NotImplementedError()
|
755 |
+
assert in_channels is not None
|
756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
+
in_channels,
|
759 |
+
kernel_size=4,
|
760 |
+
stride=2,
|
761 |
+
padding=1)
|
762 |
+
|
763 |
+
def forward(self, x, scale_factor=1.0):
|
764 |
+
if scale_factor==1.0:
|
765 |
+
return x
|
766 |
+
else:
|
767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
+
return x
|
769 |
+
|
770 |
+
class FirstStagePostProcessor(nn.Module):
|
771 |
+
|
772 |
+
def __init__(self, ch_mult:list, in_channels,
|
773 |
+
pretrained_model:nn.Module=None,
|
774 |
+
reshape=False,
|
775 |
+
n_channels=None,
|
776 |
+
dropout=0.,
|
777 |
+
pretrained_config=None):
|
778 |
+
super().__init__()
|
779 |
+
if pretrained_config is None:
|
780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
+
self.pretrained_model = pretrained_model
|
782 |
+
else:
|
783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
+
self.instantiate_pretrained(pretrained_config)
|
785 |
+
|
786 |
+
self.do_reshape = reshape
|
787 |
+
|
788 |
+
if n_channels is None:
|
789 |
+
n_channels = self.pretrained_model.encoder.ch
|
790 |
+
|
791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
+
stride=1,padding=1)
|
794 |
+
|
795 |
+
blocks = []
|
796 |
+
downs = []
|
797 |
+
ch_in = n_channels
|
798 |
+
for m in ch_mult:
|
799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
+
ch_in = m * n_channels
|
801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
+
|
803 |
+
self.model = nn.ModuleList(blocks)
|
804 |
+
self.downsampler = nn.ModuleList(downs)
|
805 |
+
|
806 |
+
|
807 |
+
def instantiate_pretrained(self, config):
|
808 |
+
model = instantiate_from_config(config)
|
809 |
+
self.pretrained_model = model.eval()
|
810 |
+
# self.pretrained_model.train = False
|
811 |
+
for param in self.pretrained_model.parameters():
|
812 |
+
param.requires_grad = False
|
813 |
+
|
814 |
+
|
815 |
+
@torch.no_grad()
|
816 |
+
def encode_with_pretrained(self,x):
|
817 |
+
c = self.pretrained_model.encode(x)
|
818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
+
c = c.mode()
|
820 |
+
return c
|
821 |
+
|
822 |
+
def forward(self,x):
|
823 |
+
z_fs = self.encode_with_pretrained(x)
|
824 |
+
z = self.proj_norm(z_fs)
|
825 |
+
z = self.proj(z)
|
826 |
+
z = nonlinearity(z)
|
827 |
+
|
828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
+
z = submodel(z,temb=None)
|
830 |
+
z = downmodel(z)
|
831 |
+
|
832 |
+
if self.do_reshape:
|
833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
+
return z
|
835 |
+
|
lib/model_zoo/autokl_utils.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import functools
|
4 |
+
|
5 |
+
class ActNorm(nn.Module):
|
6 |
+
def __init__(self, num_features, logdet=False, affine=True,
|
7 |
+
allow_reverse_init=False):
|
8 |
+
assert affine
|
9 |
+
super().__init__()
|
10 |
+
self.logdet = logdet
|
11 |
+
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
12 |
+
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
13 |
+
self.allow_reverse_init = allow_reverse_init
|
14 |
+
|
15 |
+
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
16 |
+
|
17 |
+
def initialize(self, input):
|
18 |
+
with torch.no_grad():
|
19 |
+
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
20 |
+
mean = (
|
21 |
+
flatten.mean(1)
|
22 |
+
.unsqueeze(1)
|
23 |
+
.unsqueeze(2)
|
24 |
+
.unsqueeze(3)
|
25 |
+
.permute(1, 0, 2, 3)
|
26 |
+
)
|
27 |
+
std = (
|
28 |
+
flatten.std(1)
|
29 |
+
.unsqueeze(1)
|
30 |
+
.unsqueeze(2)
|
31 |
+
.unsqueeze(3)
|
32 |
+
.permute(1, 0, 2, 3)
|
33 |
+
)
|
34 |
+
|
35 |
+
self.loc.data.copy_(-mean)
|
36 |
+
self.scale.data.copy_(1 / (std + 1e-6))
|
37 |
+
|
38 |
+
def forward(self, input, reverse=False):
|
39 |
+
if reverse:
|
40 |
+
return self.reverse(input)
|
41 |
+
if len(input.shape) == 2:
|
42 |
+
input = input[:,:,None,None]
|
43 |
+
squeeze = True
|
44 |
+
else:
|
45 |
+
squeeze = False
|
46 |
+
|
47 |
+
_, _, height, width = input.shape
|
48 |
+
|
49 |
+
if self.training and self.initialized.item() == 0:
|
50 |
+
self.initialize(input)
|
51 |
+
self.initialized.fill_(1)
|
52 |
+
|
53 |
+
h = self.scale * (input + self.loc)
|
54 |
+
|
55 |
+
if squeeze:
|
56 |
+
h = h.squeeze(-1).squeeze(-1)
|
57 |
+
|
58 |
+
if self.logdet:
|
59 |
+
log_abs = torch.log(torch.abs(self.scale))
|
60 |
+
logdet = height*width*torch.sum(log_abs)
|
61 |
+
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
62 |
+
return h, logdet
|
63 |
+
|
64 |
+
return h
|
65 |
+
|
66 |
+
def reverse(self, output):
|
67 |
+
if self.training and self.initialized.item() == 0:
|
68 |
+
if not self.allow_reverse_init:
|
69 |
+
raise RuntimeError(
|
70 |
+
"Initializing ActNorm in reverse direction is "
|
71 |
+
"disabled by default. Use allow_reverse_init=True to enable."
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
self.initialize(output)
|
75 |
+
self.initialized.fill_(1)
|
76 |
+
|
77 |
+
if len(output.shape) == 2:
|
78 |
+
output = output[:,:,None,None]
|
79 |
+
squeeze = True
|
80 |
+
else:
|
81 |
+
squeeze = False
|
82 |
+
|
83 |
+
h = output / self.scale - self.loc
|
84 |
+
|
85 |
+
if squeeze:
|
86 |
+
h = h.squeeze(-1).squeeze(-1)
|
87 |
+
return h
|
88 |
+
|
89 |
+
#################
|
90 |
+
# Discriminator #
|
91 |
+
#################
|
92 |
+
|
93 |
+
def weights_init(m):
|
94 |
+
classname = m.__class__.__name__
|
95 |
+
if classname.find('Conv') != -1:
|
96 |
+
nn.init.normal_(m.weight.data, 0.0, 0.02)
|
97 |
+
elif classname.find('BatchNorm') != -1:
|
98 |
+
nn.init.normal_(m.weight.data, 1.0, 0.02)
|
99 |
+
nn.init.constant_(m.bias.data, 0)
|
100 |
+
|
101 |
+
class NLayerDiscriminator(nn.Module):
|
102 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
103 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
104 |
+
"""
|
105 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
106 |
+
"""Construct a PatchGAN discriminator
|
107 |
+
Parameters:
|
108 |
+
input_nc (int) -- the number of channels in input images
|
109 |
+
ndf (int) -- the number of filters in the last conv layer
|
110 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
111 |
+
norm_layer -- normalization layer
|
112 |
+
"""
|
113 |
+
super(NLayerDiscriminator, self).__init__()
|
114 |
+
if not use_actnorm:
|
115 |
+
norm_layer = nn.BatchNorm2d
|
116 |
+
else:
|
117 |
+
norm_layer = ActNorm
|
118 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
119 |
+
use_bias = norm_layer.func != nn.BatchNorm2d
|
120 |
+
else:
|
121 |
+
use_bias = norm_layer != nn.BatchNorm2d
|
122 |
+
|
123 |
+
kw = 4
|
124 |
+
padw = 1
|
125 |
+
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
126 |
+
nf_mult = 1
|
127 |
+
nf_mult_prev = 1
|
128 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
129 |
+
nf_mult_prev = nf_mult
|
130 |
+
nf_mult = min(2 ** n, 8)
|
131 |
+
sequence += [
|
132 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
133 |
+
norm_layer(ndf * nf_mult),
|
134 |
+
nn.LeakyReLU(0.2, True)
|
135 |
+
]
|
136 |
+
|
137 |
+
nf_mult_prev = nf_mult
|
138 |
+
nf_mult = min(2 ** n_layers, 8)
|
139 |
+
sequence += [
|
140 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
141 |
+
norm_layer(ndf * nf_mult),
|
142 |
+
nn.LeakyReLU(0.2, True)
|
143 |
+
]
|
144 |
+
|
145 |
+
sequence += [
|
146 |
+
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
|
147 |
+
self.main = nn.Sequential(*sequence)
|
148 |
+
|
149 |
+
def forward(self, input):
|
150 |
+
"""Standard forward."""
|
151 |
+
return self.main(input)
|
152 |
+
|
153 |
+
#########
|
154 |
+
# LPIPS #
|
155 |
+
#########
|
156 |
+
|
157 |
+
class ScalingLayer(nn.Module):
|
158 |
+
def __init__(self):
|
159 |
+
super(ScalingLayer, self).__init__()
|
160 |
+
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
161 |
+
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
162 |
+
|
163 |
+
def forward(self, inp):
|
164 |
+
return (inp - self.shift) / self.scale
|
165 |
+
|
166 |
+
class NetLinLayer(nn.Module):
|
167 |
+
""" A single linear layer which does a 1x1 conv """
|
168 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
169 |
+
super(NetLinLayer, self).__init__()
|
170 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
171 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
172 |
+
self.model = nn.Sequential(*layers)
|
173 |
+
|
174 |
+
from collections import namedtuple
|
175 |
+
from torchvision import models
|
176 |
+
from torchvision.models import VGG16_Weights
|
177 |
+
|
178 |
+
class vgg16(torch.nn.Module):
|
179 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
180 |
+
super(vgg16, self).__init__()
|
181 |
+
if pretrained:
|
182 |
+
vgg_pretrained_features = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1).features
|
183 |
+
self.slice1 = torch.nn.Sequential()
|
184 |
+
self.slice2 = torch.nn.Sequential()
|
185 |
+
self.slice3 = torch.nn.Sequential()
|
186 |
+
self.slice4 = torch.nn.Sequential()
|
187 |
+
self.slice5 = torch.nn.Sequential()
|
188 |
+
self.N_slices = 5
|
189 |
+
for x in range(4):
|
190 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
191 |
+
for x in range(4, 9):
|
192 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
193 |
+
for x in range(9, 16):
|
194 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
195 |
+
for x in range(16, 23):
|
196 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
197 |
+
for x in range(23, 30):
|
198 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
199 |
+
if not requires_grad:
|
200 |
+
for param in self.parameters():
|
201 |
+
param.requires_grad = False
|
202 |
+
|
203 |
+
def forward(self, X):
|
204 |
+
h = self.slice1(X)
|
205 |
+
h_relu1_2 = h
|
206 |
+
h = self.slice2(h)
|
207 |
+
h_relu2_2 = h
|
208 |
+
h = self.slice3(h)
|
209 |
+
h_relu3_3 = h
|
210 |
+
h = self.slice4(h)
|
211 |
+
h_relu4_3 = h
|
212 |
+
h = self.slice5(h)
|
213 |
+
h_relu5_3 = h
|
214 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
215 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
216 |
+
return out
|
217 |
+
|
218 |
+
def normalize_tensor(x,eps=1e-10):
|
219 |
+
norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
|
220 |
+
return x/(norm_factor+eps)
|
221 |
+
|
222 |
+
def spatial_average(x, keepdim=True):
|
223 |
+
return x.mean([2,3],keepdim=keepdim)
|
224 |
+
|
225 |
+
def get_ckpt_path(*args, **kwargs):
|
226 |
+
return 'pretrained/lpips.pth'
|
227 |
+
|
228 |
+
class LPIPS(nn.Module):
|
229 |
+
# Learned perceptual metric
|
230 |
+
def __init__(self, use_dropout=True):
|
231 |
+
super().__init__()
|
232 |
+
self.scaling_layer = ScalingLayer()
|
233 |
+
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
234 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
235 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
236 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
237 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
238 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
239 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
240 |
+
self.load_from_pretrained()
|
241 |
+
for param in self.parameters():
|
242 |
+
param.requires_grad = False
|
243 |
+
|
244 |
+
def load_from_pretrained(self, name="vgg_lpips"):
|
245 |
+
ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips")
|
246 |
+
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
247 |
+
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
248 |
+
|
249 |
+
@classmethod
|
250 |
+
def from_pretrained(cls, name="vgg_lpips"):
|
251 |
+
if name != "vgg_lpips":
|
252 |
+
raise NotImplementedError
|
253 |
+
model = cls()
|
254 |
+
ckpt = get_ckpt_path(name)
|
255 |
+
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
256 |
+
return model
|
257 |
+
|
258 |
+
def forward(self, input, target):
|
259 |
+
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
260 |
+
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
261 |
+
feats0, feats1, diffs = {}, {}, {}
|
262 |
+
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
263 |
+
for kk in range(len(self.chns)):
|
264 |
+
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
|
265 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
266 |
+
|
267 |
+
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
|
268 |
+
val = res[0]
|
269 |
+
for l in range(1, len(self.chns)):
|
270 |
+
val += res[l]
|
271 |
+
return val
|
272 |
+
|
273 |
+
############
|
274 |
+
# The loss #
|
275 |
+
############
|
276 |
+
|
277 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
278 |
+
if global_step < threshold:
|
279 |
+
weight = value
|
280 |
+
return weight
|
281 |
+
|
282 |
+
def hinge_d_loss(logits_real, logits_fake):
|
283 |
+
loss_real = torch.mean(F.relu(1. - logits_real))
|
284 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake))
|
285 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
286 |
+
return d_loss
|
287 |
+
|
288 |
+
def vanilla_d_loss(logits_real, logits_fake):
|
289 |
+
d_loss = 0.5 * (
|
290 |
+
torch.mean(torch.nn.functional.softplus(-logits_real)) +
|
291 |
+
torch.mean(torch.nn.functional.softplus(logits_fake)))
|
292 |
+
return d_loss
|
293 |
+
|
294 |
+
class LPIPSWithDiscriminator(nn.Module):
|
295 |
+
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
296 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
297 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
298 |
+
disc_loss="hinge"):
|
299 |
+
|
300 |
+
super().__init__()
|
301 |
+
assert disc_loss in ["hinge", "vanilla"]
|
302 |
+
self.kl_weight = kl_weight
|
303 |
+
self.pixel_weight = pixelloss_weight
|
304 |
+
self.perceptual_loss = LPIPS().eval()
|
305 |
+
self.perceptual_weight = perceptual_weight
|
306 |
+
# output log variance
|
307 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
308 |
+
|
309 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
310 |
+
n_layers=disc_num_layers,
|
311 |
+
use_actnorm=use_actnorm
|
312 |
+
).apply(weights_init)
|
313 |
+
self.discriminator_iter_start = disc_start
|
314 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
315 |
+
self.disc_factor = disc_factor
|
316 |
+
self.discriminator_weight = disc_weight
|
317 |
+
self.disc_conditional = disc_conditional
|
318 |
+
|
319 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
320 |
+
if last_layer is not None:
|
321 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
322 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
323 |
+
else:
|
324 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
325 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
326 |
+
|
327 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
328 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
329 |
+
d_weight = d_weight * self.discriminator_weight
|
330 |
+
return d_weight
|
331 |
+
|
332 |
+
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
333 |
+
global_step, last_layer=None, cond=None, split="train",
|
334 |
+
weights=None):
|
335 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
336 |
+
if self.perceptual_weight > 0:
|
337 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
338 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
339 |
+
|
340 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
341 |
+
weighted_nll_loss = nll_loss
|
342 |
+
if weights is not None:
|
343 |
+
weighted_nll_loss = weights*nll_loss
|
344 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
345 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
346 |
+
kl_loss = posteriors.kl()
|
347 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
348 |
+
|
349 |
+
# now the GAN part
|
350 |
+
if optimizer_idx == 0:
|
351 |
+
# generator update
|
352 |
+
if cond is None:
|
353 |
+
assert not self.disc_conditional
|
354 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
355 |
+
else:
|
356 |
+
assert self.disc_conditional
|
357 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
358 |
+
g_loss = -torch.mean(logits_fake)
|
359 |
+
|
360 |
+
if self.disc_factor > 0.0:
|
361 |
+
try:
|
362 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
363 |
+
except RuntimeError:
|
364 |
+
assert not self.training
|
365 |
+
d_weight = torch.tensor(0.0)
|
366 |
+
else:
|
367 |
+
d_weight = torch.tensor(0.0)
|
368 |
+
|
369 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
370 |
+
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
371 |
+
|
372 |
+
log = {"Loss": loss.clone().detach().mean(),
|
373 |
+
"logvar": self.logvar.detach(),
|
374 |
+
"loss_kl": kl_loss.detach().mean(),
|
375 |
+
"loss_nll": nll_loss.detach().mean(),
|
376 |
+
"loss_rec": rec_loss.detach().mean(),
|
377 |
+
"d_weight": d_weight.detach(),
|
378 |
+
"disc_factor": torch.tensor(disc_factor),
|
379 |
+
"loss_g": g_loss.detach().mean(),
|
380 |
+
}
|
381 |
+
return loss, log
|
382 |
+
|
383 |
+
if optimizer_idx == 1:
|
384 |
+
# second pass for discriminator update
|
385 |
+
if cond is None:
|
386 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
387 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
388 |
+
else:
|
389 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
390 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
391 |
+
|
392 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
393 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
394 |
+
|
395 |
+
log = {"Loss": d_loss.clone().detach().mean(),
|
396 |
+
"loss_disc": d_loss.clone().detach().mean(),
|
397 |
+
"logits_real": logits_real.detach().mean(),
|
398 |
+
"logits_fake": logits_fake.detach().mean()
|
399 |
+
}
|
400 |
+
return d_loss, log
|
lib/model_zoo/clip.py
ADDED
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
from lib.model_zoo.common.get_model import register
|
6 |
+
|
7 |
+
symbol = 'clip'
|
8 |
+
|
9 |
+
class AbstractEncoder(nn.Module):
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
def encode(self, *args, **kwargs):
|
14 |
+
raise NotImplementedError
|
15 |
+
|
16 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
17 |
+
|
18 |
+
def disabled_train(self, mode=True):
|
19 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
20 |
+
does not change anymore."""
|
21 |
+
return self
|
22 |
+
|
23 |
+
@register('clip_text_context_encoder_sdv1')
|
24 |
+
class CLIPTextContextEncoderSDv1(AbstractEncoder):
|
25 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
26 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True): # clip-vit-base-patch32
|
27 |
+
super().__init__()
|
28 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
29 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
30 |
+
self.device = device
|
31 |
+
self.max_length = max_length
|
32 |
+
if freeze:
|
33 |
+
self.freeze()
|
34 |
+
|
35 |
+
def freeze(self):
|
36 |
+
self.transformer = self.transformer.eval()
|
37 |
+
for param in self.parameters():
|
38 |
+
param.requires_grad = False
|
39 |
+
|
40 |
+
def forward(self, text):
|
41 |
+
with torch.no_grad():
|
42 |
+
batch_encoding = self.tokenizer(
|
43 |
+
text, truncation=True, max_length=self.max_length, return_length=True,
|
44 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
45 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
46 |
+
max_token_n = self.transformer.text_model.embeddings.position_ids.shape[1]
|
47 |
+
positional_ids = torch.arange(max_token_n)[None].to(self.device)
|
48 |
+
outputs = self.transformer(
|
49 |
+
input_ids=tokens,
|
50 |
+
position_ids=positional_ids, )
|
51 |
+
z = outputs.last_hidden_state
|
52 |
+
return z
|
53 |
+
|
54 |
+
def encode(self, text):
|
55 |
+
return self(text)
|
56 |
+
|
57 |
+
#############################
|
58 |
+
# copyed from justin's code #
|
59 |
+
#############################
|
60 |
+
|
61 |
+
@register('clip_image_context_encoder_justin')
|
62 |
+
class CLIPImageContextEncoderJustin(AbstractEncoder):
|
63 |
+
"""
|
64 |
+
Uses the CLIP image encoder.
|
65 |
+
"""
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
model='ViT-L/14',
|
69 |
+
jit=False,
|
70 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
71 |
+
antialias=False,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
from . import clip_justin
|
75 |
+
self.model, _ = clip_justin.load(name=model, device=device, jit=jit)
|
76 |
+
self.device = device
|
77 |
+
self.antialias = antialias
|
78 |
+
|
79 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
80 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
81 |
+
|
82 |
+
# I didn't call this originally, but seems like it was frozen anyway
|
83 |
+
self.freeze()
|
84 |
+
|
85 |
+
def freeze(self):
|
86 |
+
self.transformer = self.model.eval()
|
87 |
+
for param in self.parameters():
|
88 |
+
param.requires_grad = False
|
89 |
+
|
90 |
+
def preprocess(self, x):
|
91 |
+
import kornia
|
92 |
+
# Expects inputs in the range -1, 1
|
93 |
+
x = kornia.geometry.resize(x, (224, 224),
|
94 |
+
interpolation='bicubic',align_corners=True,
|
95 |
+
antialias=self.antialias)
|
96 |
+
x = (x + 1.) / 2.
|
97 |
+
# renormalize according to clip
|
98 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
99 |
+
return x
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
# x is assumed to be in range [-1,1]
|
103 |
+
return self.model.encode_image(self.preprocess(x)).float()
|
104 |
+
|
105 |
+
def encode(self, im):
|
106 |
+
return self(im).unsqueeze(1)
|
107 |
+
|
108 |
+
###############
|
109 |
+
# for vd next #
|
110 |
+
###############
|
111 |
+
|
112 |
+
from transformers import CLIPModel
|
113 |
+
|
114 |
+
@register('clip_text_context_encoder')
|
115 |
+
class CLIPTextContextEncoder(AbstractEncoder):
|
116 |
+
def __init__(self,
|
117 |
+
version="openai/clip-vit-large-patch14",
|
118 |
+
max_length=77,
|
119 |
+
fp16=False, ):
|
120 |
+
super().__init__()
|
121 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
122 |
+
self.model = CLIPModel.from_pretrained(version)
|
123 |
+
self.max_length = max_length
|
124 |
+
self.fp16 = fp16
|
125 |
+
self.freeze()
|
126 |
+
|
127 |
+
def get_device(self):
|
128 |
+
# A trick to get device
|
129 |
+
return self.model.text_projection.weight.device
|
130 |
+
|
131 |
+
def freeze(self):
|
132 |
+
self.model = self.model.eval()
|
133 |
+
self.train = disabled_train
|
134 |
+
for param in self.parameters():
|
135 |
+
param.requires_grad = False
|
136 |
+
|
137 |
+
def encode(self, text):
|
138 |
+
batch_encoding = self.tokenizer(
|
139 |
+
text, truncation=True, max_length=self.max_length, return_length=True,
|
140 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
141 |
+
tokens = batch_encoding["input_ids"].to(self.get_device())
|
142 |
+
outputs = self.model.text_model(input_ids=tokens)
|
143 |
+
z = self.model.text_projection(outputs.last_hidden_state)
|
144 |
+
z_pooled = self.model.text_projection(outputs.pooler_output)
|
145 |
+
z = z / torch.norm(z_pooled.unsqueeze(1), dim=-1, keepdim=True)
|
146 |
+
return z
|
147 |
+
|
148 |
+
from transformers import CLIPProcessor
|
149 |
+
|
150 |
+
@register('clip_image_context_encoder')
|
151 |
+
class CLIPImageContextEncoder(AbstractEncoder):
|
152 |
+
def __init__(self,
|
153 |
+
version="openai/clip-vit-large-patch14",
|
154 |
+
fp16=False, ):
|
155 |
+
super().__init__()
|
156 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
157 |
+
self.processor = CLIPProcessor.from_pretrained(version)
|
158 |
+
self.model = CLIPModel.from_pretrained(version)
|
159 |
+
self.fp16 = fp16
|
160 |
+
self.freeze()
|
161 |
+
|
162 |
+
def get_device(self):
|
163 |
+
# A trick to get device
|
164 |
+
return self.model.text_projection.weight.device
|
165 |
+
|
166 |
+
def freeze(self):
|
167 |
+
self.model = self.model.eval()
|
168 |
+
self.train = disabled_train
|
169 |
+
for param in self.parameters():
|
170 |
+
param.requires_grad = False
|
171 |
+
|
172 |
+
def _encode(self, images):
|
173 |
+
if isinstance(images, torch.Tensor):
|
174 |
+
import torchvision.transforms as tvtrans
|
175 |
+
images = [tvtrans.ToPILImage()(i) for i in images]
|
176 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
177 |
+
pixels = inputs['pixel_values'].half() if self.fp16 else inputs['pixel_values']
|
178 |
+
pixels = pixels.to(self.get_device())
|
179 |
+
outputs = self.model.vision_model(pixel_values=pixels)
|
180 |
+
z = outputs.last_hidden_state
|
181 |
+
z = self.model.vision_model.post_layernorm(z)
|
182 |
+
z = self.model.visual_projection(z)
|
183 |
+
z_pooled = z[:, 0:1]
|
184 |
+
z = z / torch.norm(z_pooled, dim=-1, keepdim=True)
|
185 |
+
return z
|
186 |
+
|
187 |
+
@torch.no_grad()
|
188 |
+
def _encode_wmask(self, images, masks):
|
189 |
+
assert isinstance(masks, torch.Tensor)
|
190 |
+
assert (len(masks.shape)==4) and (masks.shape[1]==1)
|
191 |
+
masks = torch.clamp(masks, 0, 1)
|
192 |
+
masked_images = images*masks
|
193 |
+
masks = masks.float()
|
194 |
+
masks = F.interpolate(masks, [224, 224], mode='bilinear')
|
195 |
+
if masks.sum() == masks.numel():
|
196 |
+
return self._encode(images)
|
197 |
+
|
198 |
+
device = images.device
|
199 |
+
dtype = images.dtype
|
200 |
+
gscale = masks.mean(axis=[1, 2, 3], keepdim=True).flatten(2)
|
201 |
+
|
202 |
+
vtoken_kernel_size = self.model.vision_model.embeddings.patch_embedding.kernel_size
|
203 |
+
vtoken_stride = self.model.vision_model.embeddings.patch_embedding.stride
|
204 |
+
mask_kernal = torch.ones([1, 1, *vtoken_kernel_size], device=device, requires_grad=False).float()
|
205 |
+
vtoken_mask = torch.nn.functional.conv2d(masks, mask_kernal, stride=vtoken_stride).flatten(2).transpose(1, 2)
|
206 |
+
vtoken_mask = vtoken_mask/np.prod(vtoken_kernel_size)
|
207 |
+
vtoken_mask = torch.concat([gscale, vtoken_mask], axis=1)
|
208 |
+
|
209 |
+
import types
|
210 |
+
def customized_embedding_forward(self, pixel_values):
|
211 |
+
batch_size = pixel_values.shape[0]
|
212 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
213 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
214 |
+
|
215 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
216 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
217 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
218 |
+
embeddings = embeddings*vtoken_mask.to(embeddings.dtype)
|
219 |
+
return embeddings
|
220 |
+
|
221 |
+
old_forward = self.model.vision_model.embeddings.forward
|
222 |
+
self.model.vision_model.embeddings.forward = types.MethodType(
|
223 |
+
customized_embedding_forward, self.model.vision_model.embeddings)
|
224 |
+
|
225 |
+
z = self._encode(images)
|
226 |
+
self.model.vision_model.embeddings.forward = old_forward
|
227 |
+
z = z * vtoken_mask.to(dtype)
|
228 |
+
return z
|
229 |
+
|
230 |
+
# def _encode_wmask(self, images, masks):
|
231 |
+
# assert isinstance(masks, torch.Tensor)
|
232 |
+
# assert (len(masks.shape)==4) and (masks.shape[1]==1)
|
233 |
+
# masks = torch.clamp(masks, 0, 1)
|
234 |
+
# masks = masks.float()
|
235 |
+
# masks = F.interpolate(masks, [224, 224], mode='bilinear')
|
236 |
+
# if masks.sum() == masks.numel():
|
237 |
+
# return self._encode(images)
|
238 |
+
|
239 |
+
# device = images.device
|
240 |
+
# dtype = images.dtype
|
241 |
+
|
242 |
+
# vtoken_kernel_size = self.model.vision_model.embeddings.patch_embedding.kernel_size
|
243 |
+
# vtoken_stride = self.model.vision_model.embeddings.patch_embedding.stride
|
244 |
+
# mask_kernal = torch.ones([1, 1, *vtoken_kernel_size], device=device, requires_grad=False).float()
|
245 |
+
# vtoken_mask = torch.nn.functional.conv2d(masks, mask_kernal, stride=vtoken_stride).flatten(2).transpose(1, 2)
|
246 |
+
# vtoken_mask = vtoken_mask/np.prod(vtoken_kernel_size)
|
247 |
+
|
248 |
+
# z = self._encode(images)
|
249 |
+
# z[:, 1:, :] = z[:, 1:, :] * vtoken_mask.to(dtype)
|
250 |
+
# z[:, 0, :] = 0
|
251 |
+
# return z
|
252 |
+
|
253 |
+
def encode(self, images, masks=None):
|
254 |
+
if masks is None:
|
255 |
+
return self._encode(images)
|
256 |
+
else:
|
257 |
+
return self._encode_wmask(images, masks)
|
258 |
+
|
259 |
+
@register('clip_image_context_encoder_position_agnostic')
|
260 |
+
class CLIPImageContextEncoderPA(CLIPImageContextEncoder):
|
261 |
+
def __init__(self, *args, **kwargs):
|
262 |
+
super().__init__(*args, **kwargs)
|
263 |
+
import types
|
264 |
+
def customized_embedding_forward(self, pixel_values):
|
265 |
+
batch_size = pixel_values.shape[0]
|
266 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
267 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
268 |
+
|
269 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
270 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
271 |
+
pembeddings = self.position_embedding(self.position_ids)
|
272 |
+
pembeddings = torch.cat([
|
273 |
+
pembeddings[:, 0:1],
|
274 |
+
pembeddings[:, 1: ].mean(dim=1, keepdim=True).repeat(1, 256, 1)], dim=1)
|
275 |
+
embeddings = embeddings + pembeddings
|
276 |
+
return embeddings
|
277 |
+
|
278 |
+
self.model.vision_model.embeddings.forward = types.MethodType(
|
279 |
+
customized_embedding_forward, self.model.vision_model.embeddings)
|
280 |
+
|
281 |
+
##############
|
282 |
+
# from sd2.0 #
|
283 |
+
##############
|
284 |
+
|
285 |
+
import open_clip
|
286 |
+
import torch.nn.functional as F
|
287 |
+
|
288 |
+
@register('openclip_text_context_encoder_sdv2')
|
289 |
+
class FrozenOpenCLIPTextEmbedderSDv2(AbstractEncoder):
|
290 |
+
"""
|
291 |
+
Uses the OpenCLIP transformer encoder for text
|
292 |
+
"""
|
293 |
+
LAYERS = [
|
294 |
+
#"pooled",
|
295 |
+
"last",
|
296 |
+
"penultimate"
|
297 |
+
]
|
298 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
299 |
+
freeze=True, layer="last"):
|
300 |
+
super().__init__()
|
301 |
+
assert layer in self.LAYERS
|
302 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
|
303 |
+
del model.visual
|
304 |
+
self.model = model
|
305 |
+
|
306 |
+
self.device = device
|
307 |
+
self.max_length = max_length
|
308 |
+
if freeze:
|
309 |
+
self.freeze()
|
310 |
+
self.layer = layer
|
311 |
+
if self.layer == "last":
|
312 |
+
self.layer_idx = 0
|
313 |
+
elif self.layer == "penultimate":
|
314 |
+
self.layer_idx = 1
|
315 |
+
else:
|
316 |
+
raise NotImplementedError()
|
317 |
+
|
318 |
+
def freeze(self):
|
319 |
+
self.model = self.model.eval()
|
320 |
+
for param in self.parameters():
|
321 |
+
param.requires_grad = False
|
322 |
+
|
323 |
+
def forward(self, text):
|
324 |
+
tokens = open_clip.tokenize(text)
|
325 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
326 |
+
return z
|
327 |
+
|
328 |
+
def encode_with_transformer(self, text):
|
329 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
330 |
+
x = x + self.model.positional_embedding
|
331 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
332 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
333 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
334 |
+
x = self.model.ln_final(x)
|
335 |
+
return x
|
336 |
+
|
337 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
|
338 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
339 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
340 |
+
break
|
341 |
+
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
342 |
+
x = checkpoint(r, x, attn_mask)
|
343 |
+
else:
|
344 |
+
x = r(x, attn_mask=attn_mask)
|
345 |
+
return x
|
346 |
+
|
347 |
+
def encode(self, text):
|
348 |
+
return self(text)
|
349 |
+
|
350 |
+
@register('openclip_text_context_encoder')
|
351 |
+
class FrozenOpenCLIPTextEmbedder(AbstractEncoder):
|
352 |
+
"""
|
353 |
+
Uses the OpenCLIP transformer encoder for text
|
354 |
+
"""
|
355 |
+
def __init__(self,
|
356 |
+
arch="ViT-H-14",
|
357 |
+
version="laion2b_s32b_b79k",
|
358 |
+
max_length=77,
|
359 |
+
freeze=True,):
|
360 |
+
super().__init__()
|
361 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
|
362 |
+
del model.visual
|
363 |
+
self.model = model
|
364 |
+
self.max_length = max_length
|
365 |
+
self.device = 'cpu'
|
366 |
+
if freeze:
|
367 |
+
self.freeze()
|
368 |
+
|
369 |
+
def to(self, device):
|
370 |
+
self.device = device
|
371 |
+
super().to(device)
|
372 |
+
|
373 |
+
def freeze(self):
|
374 |
+
self.model = self.model.eval()
|
375 |
+
for param in self.parameters():
|
376 |
+
param.requires_grad = False
|
377 |
+
|
378 |
+
def forward(self, text):
|
379 |
+
self.device = self.model.ln_final.weight.device # urgly trick
|
380 |
+
tokens = open_clip.tokenize(text)
|
381 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
382 |
+
return z
|
383 |
+
|
384 |
+
def encode_with_transformer(self, text):
|
385 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
386 |
+
x = x + self.model.positional_embedding
|
387 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
388 |
+
x = self.model.transformer(x, attn_mask=self.model.attn_mask)
|
389 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
390 |
+
x = self.model.ln_final(x)
|
391 |
+
x_pool = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.model.text_projection
|
392 |
+
# x_pool_debug = F.normalize(x_pool, dim=-1)
|
393 |
+
x = x @ self.model.text_projection
|
394 |
+
x = x / x_pool.norm(dim=1, keepdim=True).unsqueeze(1)
|
395 |
+
return x
|
396 |
+
|
397 |
+
def encode(self, text):
|
398 |
+
return self(text)
|
399 |
+
|
400 |
+
@register('openclip_image_context_encoder')
|
401 |
+
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
402 |
+
"""
|
403 |
+
Uses the OpenCLIP transformer encoder for text
|
404 |
+
"""
|
405 |
+
def __init__(self,
|
406 |
+
arch="ViT-H-14",
|
407 |
+
version="laion2b_s32b_b79k",
|
408 |
+
freeze=True,):
|
409 |
+
super().__init__()
|
410 |
+
model, _, preprocess = open_clip.create_model_and_transforms(
|
411 |
+
arch, device=torch.device('cpu'), pretrained=version)
|
412 |
+
self.model = model.visual
|
413 |
+
self.device = 'cpu'
|
414 |
+
import torchvision.transforms as tvtrans
|
415 |
+
# we only need resize & normalization
|
416 |
+
preprocess.transforms[0].size = [224, 224] # make it more precise
|
417 |
+
self.preprocess = tvtrans.Compose([
|
418 |
+
preprocess.transforms[0],
|
419 |
+
preprocess.transforms[4],])
|
420 |
+
if freeze:
|
421 |
+
self.freeze()
|
422 |
+
|
423 |
+
def to(self, device):
|
424 |
+
self.device = device
|
425 |
+
super().to(device)
|
426 |
+
|
427 |
+
def freeze(self):
|
428 |
+
self.model = self.model.eval()
|
429 |
+
for param in self.parameters():
|
430 |
+
param.requires_grad = False
|
431 |
+
|
432 |
+
def forward(self, image):
|
433 |
+
z = self.preprocess(image)
|
434 |
+
z = self.encode_with_transformer(z)
|
435 |
+
return z
|
436 |
+
|
437 |
+
def encode_with_transformer(self, image):
|
438 |
+
x = self.model.conv1(image)
|
439 |
+
x = x.reshape(x.shape[0], x.shape[1], -1)
|
440 |
+
x = x.permute(0, 2, 1)
|
441 |
+
x = torch.cat([
|
442 |
+
self.model.class_embedding.to(x.dtype)
|
443 |
+
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
444 |
+
x], dim=1)
|
445 |
+
x = x + self.model.positional_embedding.to(x.dtype)
|
446 |
+
x = self.model.ln_pre(x)
|
447 |
+
x = x.permute(1, 0, 2)
|
448 |
+
x = self.model.transformer(x)
|
449 |
+
x = x.permute(1, 0, 2)
|
450 |
+
|
451 |
+
x = self.model.ln_post(x)
|
452 |
+
if self.model.proj is not None:
|
453 |
+
x = x @ self.model.proj
|
454 |
+
|
455 |
+
x_pool = x[:, 0, :]
|
456 |
+
# x_pool_debug = self.model(image)
|
457 |
+
# x_pooln_debug = F.normalize(x_pool_debug, dim=-1)
|
458 |
+
x = x / x_pool.norm(dim=1, keepdim=True).unsqueeze(1)
|
459 |
+
return x
|
460 |
+
|
461 |
+
def _encode(self, image):
|
462 |
+
return self(image)
|
463 |
+
|
464 |
+
def _encode_wmask(self, images, masks):
|
465 |
+
z = self._encode(images)
|
466 |
+
device = z.device
|
467 |
+
vtoken_kernel_size = self.model.conv1.kernel_size
|
468 |
+
vtoken_stride = self.model.conv1.stride
|
469 |
+
mask_kernal = torch.ones([1, 1, *vtoken_kernel_size], device=device, dtype=z.dtype, requires_grad=False)
|
470 |
+
mask_kernal /= np.prod(vtoken_kernel_size)
|
471 |
+
|
472 |
+
assert isinstance(masks, torch.Tensor)
|
473 |
+
assert (len(masks.shape)==4) and (masks.shape[1]==1)
|
474 |
+
masks = torch.clamp(masks, 0, 1)
|
475 |
+
masks = F.interpolate(masks, [224, 224], mode='bilinear')
|
476 |
+
|
477 |
+
vtoken_mask = torch.nn.functional.conv2d(1-masks, mask_kernal, stride=vtoken_stride).flatten(2).transpose(1, 2)
|
478 |
+
z[:, 1:, :] = z[:, 1:, :] * vtoken_mask
|
479 |
+
z[:, 0, :] = 0
|
480 |
+
return z
|
481 |
+
|
482 |
+
def encode(self, images, masks=None):
|
483 |
+
if masks is None:
|
484 |
+
return self._encode(images)
|
485 |
+
else:
|
486 |
+
return self._encode_wmask(images, masks)
|
487 |
+
|
488 |
+
############################
|
489 |
+
# def customized tokenizer #
|
490 |
+
############################
|
491 |
+
|
492 |
+
from open_clip import SimpleTokenizer
|
493 |
+
|
494 |
+
@register('openclip_text_context_encoder_sdv2_customized_tokenizer_v1')
|
495 |
+
class FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV1(FrozenOpenCLIPTextEmbedderSDv2):
|
496 |
+
"""
|
497 |
+
Uses the OpenCLIP transformer encoder for text
|
498 |
+
"""
|
499 |
+
def __init__(self, customized_tokens, *args, **kwargs):
|
500 |
+
super().__init__(*args, **kwargs)
|
501 |
+
if isinstance(customized_tokens, str):
|
502 |
+
customized_tokens = [customized_tokens]
|
503 |
+
self.tokenizer = open_clip.SimpleTokenizer(special_tokens=customized_tokens)
|
504 |
+
self.num_regular_tokens = self.model.token_embedding.weight.shape[0]
|
505 |
+
self.embedding_dim = self.model.ln_final.weight.shape[0]
|
506 |
+
self.customized_token_embedding = nn.Embedding(
|
507 |
+
len(customized_tokens), embedding_dim=self.embedding_dim)
|
508 |
+
nn.init.normal_(self.customized_token_embedding.weight, std=0.02)
|
509 |
+
|
510 |
+
def tokenize(self, texts):
|
511 |
+
if isinstance(texts, str):
|
512 |
+
texts = [texts]
|
513 |
+
sot_token = self.tokenizer.encoder["<start_of_text>"]
|
514 |
+
eot_token = self.tokenizer.encoder["<end_of_text>"]
|
515 |
+
all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts]
|
516 |
+
maxn = self.num_regular_tokens
|
517 |
+
regular_tokens = [[ti if ti < maxn else 0 for ti in tokens] for tokens in all_tokens]
|
518 |
+
token_mask = [[0 if ti < maxn else 1 for ti in tokens] for tokens in all_tokens]
|
519 |
+
customized_tokens = [[ti-maxn if ti >= maxn else 0 for ti in tokens] for tokens in all_tokens]
|
520 |
+
return regular_tokens, customized_tokens, token_mask
|
521 |
+
|
522 |
+
def pad_to_length(self, tokens, context_length=77, eot_token=None):
|
523 |
+
result = torch.zeros(len(tokens), context_length, dtype=torch.long)
|
524 |
+
eot_token = self.tokenizer.encoder["<end_of_text>"] if eot_token is None else eot_token
|
525 |
+
for i, tokens in enumerate(tokens):
|
526 |
+
if len(tokens) > context_length:
|
527 |
+
tokens = tokens[:context_length] # Truncate
|
528 |
+
tokens[-1] = eot_token
|
529 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
530 |
+
return result
|
531 |
+
|
532 |
+
def forward(self, text):
|
533 |
+
self.device = self.model.ln_final.weight.device # urgly trick
|
534 |
+
regular_tokens, customized_tokens, token_mask = self.tokenize(text)
|
535 |
+
regular_tokens = self.pad_to_length(regular_tokens).to(self.device)
|
536 |
+
customized_tokens = self.pad_to_length(customized_tokens, eot_token=0).to(self.device)
|
537 |
+
token_mask = self.pad_to_length(token_mask, eot_token=0).to(self.device)
|
538 |
+
z0 = self.encode_with_transformer(regular_tokens)
|
539 |
+
z1 = self.customized_token_embedding(customized_tokens)
|
540 |
+
token_mask = token_mask[:, :, None].type(z0.dtype)
|
541 |
+
z = z0 * (1-token_mask) + z1 * token_mask
|
542 |
+
return z
|
543 |
+
|
544 |
+
@register('openclip_text_context_encoder_sdv2_customized_tokenizer_v2')
|
545 |
+
class FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV2(FrozenOpenCLIPTextEmbedderSDv2):
|
546 |
+
"""
|
547 |
+
Uses the OpenCLIP transformer encoder for text
|
548 |
+
"""
|
549 |
+
def __init__(self, customized_tokens, *args, **kwargs):
|
550 |
+
super().__init__(*args, **kwargs)
|
551 |
+
if isinstance(customized_tokens, str):
|
552 |
+
customized_tokens = [customized_tokens]
|
553 |
+
self.tokenizer = open_clip.SimpleTokenizer(special_tokens=customized_tokens)
|
554 |
+
self.num_regular_tokens = self.model.token_embedding.weight.shape[0]
|
555 |
+
self.embedding_dim = self.model.token_embedding.weight.shape[1]
|
556 |
+
self.customized_token_embedding = nn.Embedding(
|
557 |
+
len(customized_tokens), embedding_dim=self.embedding_dim)
|
558 |
+
nn.init.normal_(self.customized_token_embedding.weight, std=0.02)
|
559 |
+
|
560 |
+
def tokenize(self, texts):
|
561 |
+
if isinstance(texts, str):
|
562 |
+
texts = [texts]
|
563 |
+
sot_token = self.tokenizer.encoder["<start_of_text>"]
|
564 |
+
eot_token = self.tokenizer.encoder["<end_of_text>"]
|
565 |
+
all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts]
|
566 |
+
maxn = self.num_regular_tokens
|
567 |
+
regular_tokens = [[ti if ti < maxn else 0 for ti in tokens] for tokens in all_tokens]
|
568 |
+
token_mask = [[0 if ti < maxn else 1 for ti in tokens] for tokens in all_tokens]
|
569 |
+
customized_tokens = [[ti-maxn if ti >= maxn else 0 for ti in tokens] for tokens in all_tokens]
|
570 |
+
return regular_tokens, customized_tokens, token_mask
|
571 |
+
|
572 |
+
def pad_to_length(self, tokens, context_length=77, eot_token=None):
|
573 |
+
result = torch.zeros(len(tokens), context_length, dtype=torch.long)
|
574 |
+
eot_token = self.tokenizer.encoder["<end_of_text>"] if eot_token is None else eot_token
|
575 |
+
for i, tokens in enumerate(tokens):
|
576 |
+
if len(tokens) > context_length:
|
577 |
+
tokens = tokens[:context_length] # Truncate
|
578 |
+
tokens[-1] = eot_token
|
579 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
580 |
+
return result
|
581 |
+
|
582 |
+
def forward(self, text):
|
583 |
+
self.device = self.model.token_embedding.weight.device # urgly trick
|
584 |
+
regular_tokens, customized_tokens, token_mask = self.tokenize(text)
|
585 |
+
regular_tokens = self.pad_to_length(regular_tokens).to(self.device)
|
586 |
+
customized_tokens = self.pad_to_length(customized_tokens, eot_token=0).to(self.device)
|
587 |
+
token_mask = self.pad_to_length(token_mask, eot_token=0).to(self.device)
|
588 |
+
z = self.encode_with_transformer(regular_tokens, customized_tokens, token_mask)
|
589 |
+
return z
|
590 |
+
|
591 |
+
def encode_with_transformer(self, token, customized_token, token_mask):
|
592 |
+
x0 = self.model.token_embedding(token)
|
593 |
+
x1 = self.customized_token_embedding(customized_token)
|
594 |
+
token_mask = token_mask[:, :, None].type(x0.dtype)
|
595 |
+
x = x0 * (1-token_mask) + x1 * token_mask
|
596 |
+
x = x + self.model.positional_embedding
|
597 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
598 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
599 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
600 |
+
x = self.model.ln_final(x)
|
601 |
+
return x
|
602 |
+
|
603 |
+
class ln_freezed_temp(nn.LayerNorm):
|
604 |
+
def forward(self, x):
|
605 |
+
self.weight.requires_grad = False
|
606 |
+
self.bias.requires_grad = False
|
607 |
+
return super().forward(x)
|
608 |
+
|
609 |
+
@register('openclip_text_context_encoder_sdv2_customized_tokenizer_v3')
|
610 |
+
class FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV3(FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV2):
|
611 |
+
"""
|
612 |
+
Uses the OpenCLIP transformer encoder for text
|
613 |
+
"""
|
614 |
+
def __init__(self, customized_tokens, texpand=4, lora_rank=None, lora_bias_trainable=True, *args, **kwargs):
|
615 |
+
super().__init__(customized_tokens, *args, **kwargs)
|
616 |
+
if isinstance(customized_tokens, str):
|
617 |
+
customized_tokens = [customized_tokens]
|
618 |
+
self.texpand = texpand
|
619 |
+
self.customized_token_embedding = nn.Embedding(
|
620 |
+
len(customized_tokens)*texpand, embedding_dim=self.embedding_dim)
|
621 |
+
nn.init.normal_(self.customized_token_embedding.weight, std=0.02)
|
622 |
+
|
623 |
+
if lora_rank is not None:
|
624 |
+
from .lora import freeze_param, freeze_module, to_lora
|
625 |
+
def convert_resattnblock(module):
|
626 |
+
module.ln_1.__class__ = ln_freezed_temp
|
627 |
+
# freeze_module(module.ln_1)
|
628 |
+
module.attn = to_lora(module.attn, lora_rank, lora_bias_trainable)
|
629 |
+
module.ln_2.__class__ = ln_freezed_temp
|
630 |
+
# freeze_module(module.ln_2)
|
631 |
+
module.mlp.c_fc = to_lora(module.mlp.c_fc, lora_rank, lora_bias_trainable)
|
632 |
+
module.mlp.c_proj = to_lora(module.mlp.c_proj, lora_rank, lora_bias_trainable)
|
633 |
+
freeze_param(self.model, 'positional_embedding')
|
634 |
+
freeze_param(self.model, 'text_projection')
|
635 |
+
freeze_param(self.model, 'logit_scale')
|
636 |
+
for idx, resattnblock in enumerate(self.model.transformer.resblocks):
|
637 |
+
convert_resattnblock(resattnblock)
|
638 |
+
freeze_module(self.model.token_embedding)
|
639 |
+
self.model.ln_final.__class__ = ln_freezed_temp
|
640 |
+
# freeze_module(self.model.ln_final)
|
641 |
+
|
642 |
+
def tokenize(self, texts):
|
643 |
+
if isinstance(texts, str):
|
644 |
+
texts = [texts]
|
645 |
+
sot_token = self.tokenizer.encoder["<start_of_text>"]
|
646 |
+
eot_token = self.tokenizer.encoder["<end_of_text>"]
|
647 |
+
all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts]
|
648 |
+
maxn = self.num_regular_tokens
|
649 |
+
regular_tokens = [[[ti] if ti < maxn else [0]*self.texpand for ti in tokens] for tokens in all_tokens]
|
650 |
+
token_mask = [[[ 0] if ti < maxn else [1]*self.texpand for ti in tokens] for tokens in all_tokens]
|
651 |
+
custom_tokens = [[[ 0] if ti < maxn else [
|
652 |
+
(ti-maxn)*self.texpand+ii for ii in range(self.texpand)]
|
653 |
+
for ti in tokens] for tokens in all_tokens]
|
654 |
+
|
655 |
+
from itertools import chain
|
656 |
+
regular_tokens = [[i for i in chain(*tokens)] for tokens in regular_tokens]
|
657 |
+
token_mask = [[i for i in chain(*tokens)] for tokens in token_mask]
|
658 |
+
custom_tokens = [[i for i in chain(*tokens)] for tokens in custom_tokens]
|
659 |
+
return regular_tokens, custom_tokens, token_mask
|
660 |
+
|
661 |
+
###################
|
662 |
+
# clip expandable #
|
663 |
+
###################
|
664 |
+
|
665 |
+
@register('clip_text_sdv1_customized_embedding')
|
666 |
+
class CLIPTextSD1CE(nn.Module):
|
667 |
+
def __init__(
|
668 |
+
self,
|
669 |
+
replace_info="text|elon musk",
|
670 |
+
version="openai/clip-vit-large-patch14",
|
671 |
+
max_length=77):
|
672 |
+
super().__init__()
|
673 |
+
|
674 |
+
self.name = 'clip_text_sdv1_customized_embedding'
|
675 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
676 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
677 |
+
self.reset_replace_info(replace_info)
|
678 |
+
self.max_length = max_length
|
679 |
+
self.special_token = "<new_token>"
|
680 |
+
|
681 |
+
def reset_replace_info(self, replace_info):
|
682 |
+
rtype, rpara = replace_info.split("|")
|
683 |
+
self.replace_type = rtype
|
684 |
+
if rtype == "token_embedding":
|
685 |
+
ce_num = int(rpara)
|
686 |
+
ce_dim = self.transformer.text_model.embeddings.token_embedding.weight.size(1)
|
687 |
+
self.cembedding = nn.Embedding(ce_num, ce_dim)
|
688 |
+
self.cembedding = self.cembedding.to(self.get_device())
|
689 |
+
elif rtype == "context_embedding":
|
690 |
+
ce_num = int(rpara)
|
691 |
+
ce_dim = self.transformer.text_model.encoder.layers[-1].layer_norm2.weight.size(0)
|
692 |
+
self.cembedding = nn.Embedding(ce_num, ce_dim)
|
693 |
+
self.cembedding = self.cembedding.to(self.get_device())
|
694 |
+
else:
|
695 |
+
assert rtype=="text"
|
696 |
+
self.replace_type = "text"
|
697 |
+
self.replace_string = rpara
|
698 |
+
self.cembedding = None
|
699 |
+
|
700 |
+
def get_device(self):
|
701 |
+
return self.transformer.text_model.embeddings.token_embedding.weight.device
|
702 |
+
|
703 |
+
def position_to_mask(self, tokens, positions):
|
704 |
+
mask = torch.zeros_like(tokens)
|
705 |
+
for idxb, idxs, idxe in zip(*positions):
|
706 |
+
mask[idxb, idxs:idxe] = 1
|
707 |
+
return mask
|
708 |
+
|
709 |
+
def forward(self, text):
|
710 |
+
tokens, positions = self.tokenize(text)
|
711 |
+
mask = self.position_to_mask(tokens, positions)
|
712 |
+
max_token_n = tokens.size(1)
|
713 |
+
positional_ids = torch.arange(max_token_n)[None].to(self.get_device())
|
714 |
+
|
715 |
+
if self.replace_what == 'token_embedding':
|
716 |
+
cembeds = self.cembedding(tokens * mask)
|
717 |
+
|
718 |
+
def embedding_customized_forward(
|
719 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None,):
|
720 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
721 |
+
if position_ids is None:
|
722 |
+
position_ids = self.position_ids[:, :seq_length]
|
723 |
+
if inputs_embeds is None:
|
724 |
+
inputs_embeds = self.token_embedding(input_ids)
|
725 |
+
inputs_embeds = inputs_embeds * (1-mask.float())[:, :, None]
|
726 |
+
inputs_embeds = inputs_embeds + cembeds
|
727 |
+
position_embeddings = self.position_embedding(position_ids)
|
728 |
+
embeddings = inputs_embeds + position_embeddings
|
729 |
+
return embeddings
|
730 |
+
|
731 |
+
import types
|
732 |
+
self.transformer.text_model.embeddings.forward = types.MethodType(
|
733 |
+
embedding_customized_forward, self.transformer.text_model.embeddings)
|
734 |
+
|
735 |
+
else:
|
736 |
+
# TODO: Implement
|
737 |
+
assert False
|
738 |
+
|
739 |
+
outputs = self.transformer(
|
740 |
+
input_ids=tokens,
|
741 |
+
position_ids=positional_ids, )
|
742 |
+
z = outputs.last_hidden_state
|
743 |
+
return z
|
744 |
+
|
745 |
+
def encode(self, text):
|
746 |
+
return self(text)
|
747 |
+
|
748 |
+
@torch.no_grad()
|
749 |
+
def tokenize(self, text):
|
750 |
+
if isinstance(text, str):
|
751 |
+
text = [text]
|
752 |
+
|
753 |
+
bos_special_text = "<|startoftext|>"
|
754 |
+
text = [ti.replace(self.special_token, bos_special_text) for ti in text]
|
755 |
+
|
756 |
+
batch_encoding = self.tokenizer(
|
757 |
+
text, truncation=True, max_length=self.max_length, return_length=True,
|
758 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
759 |
+
tokens = batch_encoding["input_ids"]
|
760 |
+
|
761 |
+
bosid = tokens[0, 0]
|
762 |
+
eosid = tokens[0, -1]
|
763 |
+
bs, maxn = tokens.shape
|
764 |
+
|
765 |
+
if self.replace_what in ['token_embedding', 'context_embedding']:
|
766 |
+
newtokens = []
|
767 |
+
ce_num = self.cembedding.weight.size(0)
|
768 |
+
idxi = []; idxstart = []; idxend = [];
|
769 |
+
for idxii, tokeni in enumerate(tokens):
|
770 |
+
newtokeni = []
|
771 |
+
idxjj = 0
|
772 |
+
for ii, tokenii in enumerate(tokeni):
|
773 |
+
if (tokenii == bosid) and (ii != 0):
|
774 |
+
newtokeni.extend([i for i in range(ce_num)])
|
775 |
+
idxi.append(idxii); idxstart.append(idxjj);
|
776 |
+
idxjj += ce_num
|
777 |
+
idxjj_record = idxjj if idxjj<=maxn-1 else maxn-1
|
778 |
+
idxend.append(idxjj_record);
|
779 |
+
else:
|
780 |
+
newtokeni.extend([tokenii])
|
781 |
+
idxjj += 1
|
782 |
+
newtokeni = newtokeni[:maxn]
|
783 |
+
newtokeni[-1] = eosid
|
784 |
+
newtokens.append(newtokeni)
|
785 |
+
return torch.LongTensor(newtokens).to(self.get_device()), (idxi, idxstart, idxend)
|
786 |
+
else:
|
787 |
+
# TODO: Implement
|
788 |
+
assert False
|
lib/model_zoo/common/__pycache__/get_model.cpython-310.pyc
ADDED
Binary file (3.32 kB). View file
|
|
lib/model_zoo/common/__pycache__/get_optimizer.cpython-310.pyc
ADDED
Binary file (1.95 kB). View file
|
|
lib/model_zoo/common/__pycache__/get_scheduler.cpython-310.pyc
ADDED
Binary file (9.44 kB). View file
|
|
lib/model_zoo/common/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (9.72 kB). View file
|
|
lib/model_zoo/common/get_model.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email.policy import strict
|
2 |
+
import torch
|
3 |
+
import torchvision.models
|
4 |
+
import os.path as osp
|
5 |
+
import copy
|
6 |
+
from ...log_service import print_log
|
7 |
+
from .utils import \
|
8 |
+
get_total_param, get_total_param_sum, \
|
9 |
+
get_unit
|
10 |
+
|
11 |
+
# def load_state_dict(net, model_path):
|
12 |
+
# if isinstance(net, dict):
|
13 |
+
# for ni, neti in net.items():
|
14 |
+
# paras = torch.load(model_path[ni], map_location=torch.device('cpu'))
|
15 |
+
# new_paras = neti.state_dict()
|
16 |
+
# new_paras.update(paras)
|
17 |
+
# neti.load_state_dict(new_paras)
|
18 |
+
# else:
|
19 |
+
# paras = torch.load(model_path, map_location=torch.device('cpu'))
|
20 |
+
# new_paras = net.state_dict()
|
21 |
+
# new_paras.update(paras)
|
22 |
+
# net.load_state_dict(new_paras)
|
23 |
+
# return
|
24 |
+
|
25 |
+
# def save_state_dict(net, path):
|
26 |
+
# if isinstance(net, (torch.nn.DataParallel,
|
27 |
+
# torch.nn.parallel.DistributedDataParallel)):
|
28 |
+
# torch.save(net.module.state_dict(), path)
|
29 |
+
# else:
|
30 |
+
# torch.save(net.state_dict(), path)
|
31 |
+
|
32 |
+
def singleton(class_):
|
33 |
+
instances = {}
|
34 |
+
def getinstance(*args, **kwargs):
|
35 |
+
if class_ not in instances:
|
36 |
+
instances[class_] = class_(*args, **kwargs)
|
37 |
+
return instances[class_]
|
38 |
+
return getinstance
|
39 |
+
|
40 |
+
def preprocess_model_args(args):
|
41 |
+
# If args has layer_units, get the corresponding
|
42 |
+
# units.
|
43 |
+
# If args get backbone, get the backbone model.
|
44 |
+
args = copy.deepcopy(args)
|
45 |
+
if 'layer_units' in args:
|
46 |
+
layer_units = [
|
47 |
+
get_unit()(i) for i in args.layer_units
|
48 |
+
]
|
49 |
+
args.layer_units = layer_units
|
50 |
+
if 'backbone' in args:
|
51 |
+
args.backbone = get_model()(args.backbone)
|
52 |
+
return args
|
53 |
+
|
54 |
+
@singleton
|
55 |
+
class get_model(object):
|
56 |
+
def __init__(self):
|
57 |
+
self.model = {}
|
58 |
+
|
59 |
+
def register(self, model, name):
|
60 |
+
self.model[name] = model
|
61 |
+
|
62 |
+
def __call__(self, cfg, verbose=True):
|
63 |
+
"""
|
64 |
+
Construct model based on the config.
|
65 |
+
"""
|
66 |
+
if cfg is None:
|
67 |
+
return None
|
68 |
+
|
69 |
+
t = cfg.type
|
70 |
+
|
71 |
+
# the register is in each file
|
72 |
+
if t.find('pfd')==0:
|
73 |
+
from .. import pfd
|
74 |
+
elif t=='autoencoderkl':
|
75 |
+
from .. import autokl
|
76 |
+
elif (t.find('clip')==0) or (t.find('openclip')==0):
|
77 |
+
from .. import clip
|
78 |
+
elif t.find('openai_unet')==0:
|
79 |
+
from .. import openaimodel
|
80 |
+
elif t.find('controlnet')==0:
|
81 |
+
from .. import controlnet
|
82 |
+
elif t.find('seecoder')==0:
|
83 |
+
from .. import seecoder
|
84 |
+
elif t.find('swin')==0:
|
85 |
+
from .. import swin
|
86 |
+
|
87 |
+
args = preprocess_model_args(cfg.args)
|
88 |
+
net = self.model[t](**args)
|
89 |
+
|
90 |
+
pretrained = cfg.get('pretrained', None)
|
91 |
+
if pretrained is None: # backward compatible
|
92 |
+
pretrained = cfg.get('pth', None)
|
93 |
+
map_location = cfg.get('map_location', 'cpu')
|
94 |
+
strict_sd = cfg.get('strict_sd', True)
|
95 |
+
|
96 |
+
if pretrained is not None:
|
97 |
+
if osp.splitext(pretrained)[1] == '.pth':
|
98 |
+
sd = torch.load(pretrained, map_location=map_location)
|
99 |
+
elif osp.splitext(pretrained)[1] == '.ckpt':
|
100 |
+
sd = torch.load(pretrained, map_location=map_location)['state_dict']
|
101 |
+
elif osp.splitext(pretrained)[1] == '.safetensors':
|
102 |
+
from safetensors.torch import load_file
|
103 |
+
from collections import OrderedDict
|
104 |
+
sd = load_file(pretrained, map_location)
|
105 |
+
sd = OrderedDict(sd)
|
106 |
+
net.load_state_dict(sd, strict=strict_sd)
|
107 |
+
if verbose:
|
108 |
+
print_log('Load model from [{}] strict [{}].'.format(pretrained, strict_sd))
|
109 |
+
|
110 |
+
# display param_num & param_sum
|
111 |
+
if verbose:
|
112 |
+
print_log(
|
113 |
+
'Load {} with total {} parameters,'
|
114 |
+
'{:.3f} parameter sum.'.format(
|
115 |
+
t,
|
116 |
+
get_total_param(net),
|
117 |
+
get_total_param_sum(net) ))
|
118 |
+
return net
|
119 |
+
|
120 |
+
def register(name):
|
121 |
+
def wrapper(class_):
|
122 |
+
get_model().register(class_, name)
|
123 |
+
return class_
|
124 |
+
return wrapper
|
lib/model_zoo/common/get_optimizer.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.optim as optim
|
3 |
+
import numpy as np
|
4 |
+
import itertools
|
5 |
+
|
6 |
+
def singleton(class_):
|
7 |
+
instances = {}
|
8 |
+
def getinstance(*args, **kwargs):
|
9 |
+
if class_ not in instances:
|
10 |
+
instances[class_] = class_(*args, **kwargs)
|
11 |
+
return instances[class_]
|
12 |
+
return getinstance
|
13 |
+
|
14 |
+
class get_optimizer(object):
|
15 |
+
def __init__(self):
|
16 |
+
self.optimizer = {}
|
17 |
+
self.register(optim.SGD, 'sgd')
|
18 |
+
self.register(optim.Adam, 'adam')
|
19 |
+
self.register(optim.AdamW, 'adamw')
|
20 |
+
|
21 |
+
def register(self, optim, name):
|
22 |
+
self.optimizer[name] = optim
|
23 |
+
|
24 |
+
def __call__(self, net, cfg):
|
25 |
+
if cfg is None:
|
26 |
+
return None
|
27 |
+
t = cfg.type
|
28 |
+
if isinstance(net, (torch.nn.DataParallel,
|
29 |
+
torch.nn.parallel.DistributedDataParallel)):
|
30 |
+
netm = net.module
|
31 |
+
else:
|
32 |
+
netm = net
|
33 |
+
pg = getattr(netm, 'parameter_group', None)
|
34 |
+
|
35 |
+
if pg is not None:
|
36 |
+
params = []
|
37 |
+
for group_name, module_or_para in pg.items():
|
38 |
+
if not isinstance(module_or_para, list):
|
39 |
+
module_or_para = [module_or_para]
|
40 |
+
|
41 |
+
grouped_params = [mi.parameters() if isinstance(mi, torch.nn.Module) else [mi] for mi in module_or_para]
|
42 |
+
grouped_params = itertools.chain(*grouped_params)
|
43 |
+
pg_dict = {'params':grouped_params, 'name':group_name}
|
44 |
+
params.append(pg_dict)
|
45 |
+
else:
|
46 |
+
params = net.parameters()
|
47 |
+
return self.optimizer[t](params, lr=0, **cfg.args)
|
lib/model_zoo/common/get_scheduler.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.optim as optim
|
3 |
+
import numpy as np
|
4 |
+
import copy
|
5 |
+
from ... import sync
|
6 |
+
from ...cfg_holder import cfg_unique_holder as cfguh
|
7 |
+
|
8 |
+
def singleton(class_):
|
9 |
+
instances = {}
|
10 |
+
def getinstance(*args, **kwargs):
|
11 |
+
if class_ not in instances:
|
12 |
+
instances[class_] = class_(*args, **kwargs)
|
13 |
+
return instances[class_]
|
14 |
+
return getinstance
|
15 |
+
|
16 |
+
@singleton
|
17 |
+
class get_scheduler(object):
|
18 |
+
def __init__(self):
|
19 |
+
self.lr_scheduler = {}
|
20 |
+
|
21 |
+
def register(self, lrsf, name):
|
22 |
+
self.lr_scheduler[name] = lrsf
|
23 |
+
|
24 |
+
def __call__(self, cfg):
|
25 |
+
if cfg is None:
|
26 |
+
return None
|
27 |
+
if isinstance(cfg, list):
|
28 |
+
schedulers = []
|
29 |
+
for ci in cfg:
|
30 |
+
t = ci.type
|
31 |
+
schedulers.append(
|
32 |
+
self.lr_scheduler[t](**ci.args))
|
33 |
+
if len(schedulers) == 0:
|
34 |
+
raise ValueError
|
35 |
+
else:
|
36 |
+
return compose_scheduler(schedulers)
|
37 |
+
t = cfg.type
|
38 |
+
return self.lr_scheduler[t](**cfg.args)
|
39 |
+
|
40 |
+
|
41 |
+
def register(name):
|
42 |
+
def wrapper(class_):
|
43 |
+
get_scheduler().register(class_, name)
|
44 |
+
return class_
|
45 |
+
return wrapper
|
46 |
+
|
47 |
+
class template_scheduler(object):
|
48 |
+
def __init__(self, step):
|
49 |
+
self.step = step
|
50 |
+
|
51 |
+
def __getitem__(self, idx):
|
52 |
+
raise ValueError
|
53 |
+
|
54 |
+
def set_lr(self, optim, new_lr, pg_lrscale=None):
|
55 |
+
"""
|
56 |
+
Set Each parameter_groups in optim with new_lr
|
57 |
+
New_lr can be find according to the idx.
|
58 |
+
pg_lrscale tells how to scale each pg.
|
59 |
+
"""
|
60 |
+
# new_lr = self.__getitem__(idx)
|
61 |
+
pg_lrscale = copy.deepcopy(pg_lrscale)
|
62 |
+
for pg in optim.param_groups:
|
63 |
+
if pg_lrscale is None:
|
64 |
+
pg['lr'] = new_lr
|
65 |
+
else:
|
66 |
+
pg['lr'] = new_lr * pg_lrscale.pop(pg['name'])
|
67 |
+
assert (pg_lrscale is None) or (len(pg_lrscale)==0), \
|
68 |
+
"pg_lrscale doesn't match pg"
|
69 |
+
|
70 |
+
@register('constant')
|
71 |
+
class constant_scheduler(template_scheduler):
|
72 |
+
def __init__(self, lr, step):
|
73 |
+
super().__init__(step)
|
74 |
+
self.lr = lr
|
75 |
+
|
76 |
+
def __getitem__(self, idx):
|
77 |
+
if idx >= self.step:
|
78 |
+
raise ValueError
|
79 |
+
return self.lr
|
80 |
+
|
81 |
+
@register('poly')
|
82 |
+
class poly_scheduler(template_scheduler):
|
83 |
+
def __init__(self, start_lr, end_lr, power, step):
|
84 |
+
super().__init__(step)
|
85 |
+
self.start_lr = start_lr
|
86 |
+
self.end_lr = end_lr
|
87 |
+
self.power = power
|
88 |
+
|
89 |
+
def __getitem__(self, idx):
|
90 |
+
if idx >= self.step:
|
91 |
+
raise ValueError
|
92 |
+
a, b = self.start_lr, self.end_lr
|
93 |
+
p, n = self.power, self.step
|
94 |
+
return b + (a-b)*((1-idx/n)**p)
|
95 |
+
|
96 |
+
@register('linear')
|
97 |
+
class linear_scheduler(template_scheduler):
|
98 |
+
def __init__(self, start_lr, end_lr, step):
|
99 |
+
super().__init__(step)
|
100 |
+
self.start_lr = start_lr
|
101 |
+
self.end_lr = end_lr
|
102 |
+
|
103 |
+
def __getitem__(self, idx):
|
104 |
+
if idx >= self.step:
|
105 |
+
raise ValueError
|
106 |
+
a, b, n = self.start_lr, self.end_lr, self.step
|
107 |
+
return b + (a-b)*(1-idx/n)
|
108 |
+
|
109 |
+
@register('multistage')
|
110 |
+
class constant_scheduler(template_scheduler):
|
111 |
+
def __init__(self, start_lr, milestones, gamma, step):
|
112 |
+
super().__init__(step)
|
113 |
+
self.start_lr = start_lr
|
114 |
+
m = [0] + milestones + [step]
|
115 |
+
lr_iter = start_lr
|
116 |
+
self.lr = []
|
117 |
+
for ms, me in zip(m[0:-1], m[1:]):
|
118 |
+
for _ in range(ms, me):
|
119 |
+
self.lr.append(lr_iter)
|
120 |
+
lr_iter *= gamma
|
121 |
+
|
122 |
+
def __getitem__(self, idx):
|
123 |
+
if idx >= self.step:
|
124 |
+
raise ValueError
|
125 |
+
return self.lr[idx]
|
126 |
+
|
127 |
+
class compose_scheduler(template_scheduler):
|
128 |
+
def __init__(self, schedulers):
|
129 |
+
self.schedulers = schedulers
|
130 |
+
self.step = [si.step for si in schedulers]
|
131 |
+
self.step_milestone = []
|
132 |
+
acc = 0
|
133 |
+
for i in self.step:
|
134 |
+
acc += i
|
135 |
+
self.step_milestone.append(acc)
|
136 |
+
self.step = sum(self.step)
|
137 |
+
|
138 |
+
def __getitem__(self, idx):
|
139 |
+
if idx >= self.step:
|
140 |
+
raise ValueError
|
141 |
+
ms = self.step_milestone
|
142 |
+
for idx, (mi, mj) in enumerate(zip(ms[:-1], ms[1:])):
|
143 |
+
if mi <= idx < mj:
|
144 |
+
return self.schedulers[idx-mi]
|
145 |
+
raise ValueError
|
146 |
+
|
147 |
+
####################
|
148 |
+
# lambda schedular #
|
149 |
+
####################
|
150 |
+
|
151 |
+
class LambdaWarmUpCosineScheduler(template_scheduler):
|
152 |
+
"""
|
153 |
+
note: use with a base_lr of 1.0
|
154 |
+
"""
|
155 |
+
def __init__(self,
|
156 |
+
base_lr,
|
157 |
+
warm_up_steps,
|
158 |
+
lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
159 |
+
cfgt = cfguh().cfg.train
|
160 |
+
bs = cfgt.batch_size
|
161 |
+
if 'gradacc_every' not in cfgt:
|
162 |
+
print('Warning, gradacc_every is not found in xml, use 1 as default.')
|
163 |
+
acc = cfgt.get('gradacc_every', 1)
|
164 |
+
self.lr_multi = base_lr * bs * acc
|
165 |
+
self.lr_warm_up_steps = warm_up_steps
|
166 |
+
self.lr_start = lr_start
|
167 |
+
self.lr_min = lr_min
|
168 |
+
self.lr_max = lr_max
|
169 |
+
self.lr_max_decay_steps = max_decay_steps
|
170 |
+
self.last_lr = 0.
|
171 |
+
self.verbosity_interval = verbosity_interval
|
172 |
+
|
173 |
+
def schedule(self, n):
|
174 |
+
if self.verbosity_interval > 0:
|
175 |
+
if n % self.verbosity_interval == 0:
|
176 |
+
print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
177 |
+
if n < self.lr_warm_up_steps:
|
178 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
179 |
+
self.last_lr = lr
|
180 |
+
return lr
|
181 |
+
else:
|
182 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
183 |
+
t = min(t, 1.0)
|
184 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
185 |
+
1 + np.cos(t * np.pi))
|
186 |
+
self.last_lr = lr
|
187 |
+
return lr
|
188 |
+
|
189 |
+
def __getitem__(self, idx):
|
190 |
+
return self.schedule(idx) * self.lr_multi
|
191 |
+
|
192 |
+
class LambdaWarmUpCosineScheduler2(template_scheduler):
|
193 |
+
"""
|
194 |
+
supports repeated iterations, configurable via lists
|
195 |
+
note: use with a base_lr of 1.0.
|
196 |
+
"""
|
197 |
+
def __init__(self,
|
198 |
+
base_lr,
|
199 |
+
warm_up_steps,
|
200 |
+
f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
201 |
+
cfgt = cfguh().cfg.train
|
202 |
+
# bs = cfgt.batch_size
|
203 |
+
# if 'gradacc_every' not in cfgt:
|
204 |
+
# print('Warning, gradacc_every is not found in xml, use 1 as default.')
|
205 |
+
# acc = cfgt.get('gradacc_every', 1)
|
206 |
+
# self.lr_multi = base_lr * bs * acc
|
207 |
+
self.lr_multi = base_lr
|
208 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
209 |
+
self.lr_warm_up_steps = warm_up_steps
|
210 |
+
self.f_start = f_start
|
211 |
+
self.f_min = f_min
|
212 |
+
self.f_max = f_max
|
213 |
+
self.cycle_lengths = cycle_lengths
|
214 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
215 |
+
self.last_f = 0.
|
216 |
+
self.verbosity_interval = verbosity_interval
|
217 |
+
|
218 |
+
def find_in_interval(self, n):
|
219 |
+
interval = 0
|
220 |
+
for cl in self.cum_cycles[1:]:
|
221 |
+
if n <= cl:
|
222 |
+
return interval
|
223 |
+
interval += 1
|
224 |
+
|
225 |
+
def schedule(self, n):
|
226 |
+
cycle = self.find_in_interval(n)
|
227 |
+
n = n - self.cum_cycles[cycle]
|
228 |
+
if self.verbosity_interval > 0:
|
229 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
230 |
+
f"current cycle {cycle}")
|
231 |
+
if n < self.lr_warm_up_steps[cycle]:
|
232 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
233 |
+
self.last_f = f
|
234 |
+
return f
|
235 |
+
else:
|
236 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
237 |
+
t = min(t, 1.0)
|
238 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
239 |
+
1 + np.cos(t * np.pi))
|
240 |
+
self.last_f = f
|
241 |
+
return f
|
242 |
+
|
243 |
+
def __getitem__(self, idx):
|
244 |
+
return self.schedule(idx) * self.lr_multi
|
245 |
+
|
246 |
+
@register('stable_diffusion_linear')
|
247 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
248 |
+
def schedule(self, n):
|
249 |
+
cycle = self.find_in_interval(n)
|
250 |
+
n = n - self.cum_cycles[cycle]
|
251 |
+
if self.verbosity_interval > 0:
|
252 |
+
if n % self.verbosity_interval == 0:
|
253 |
+
print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
254 |
+
f"current cycle {cycle}")
|
255 |
+
if n < self.lr_warm_up_steps[cycle]:
|
256 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
257 |
+
self.last_f = f
|
258 |
+
return f
|
259 |
+
else:
|
260 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
261 |
+
self.last_f = f
|
262 |
+
return f
|
lib/model_zoo/common/utils.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import copy
|
6 |
+
import functools
|
7 |
+
import itertools
|
8 |
+
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
########
|
12 |
+
# unit #
|
13 |
+
########
|
14 |
+
|
15 |
+
def singleton(class_):
|
16 |
+
instances = {}
|
17 |
+
def getinstance(*args, **kwargs):
|
18 |
+
if class_ not in instances:
|
19 |
+
instances[class_] = class_(*args, **kwargs)
|
20 |
+
return instances[class_]
|
21 |
+
return getinstance
|
22 |
+
|
23 |
+
def str2value(v):
|
24 |
+
v = v.strip()
|
25 |
+
try:
|
26 |
+
return int(v)
|
27 |
+
except:
|
28 |
+
pass
|
29 |
+
try:
|
30 |
+
return float(v)
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
if v in ('True', 'true'):
|
34 |
+
return True
|
35 |
+
elif v in ('False', 'false'):
|
36 |
+
return False
|
37 |
+
else:
|
38 |
+
return v
|
39 |
+
|
40 |
+
@singleton
|
41 |
+
class get_unit(object):
|
42 |
+
def __init__(self):
|
43 |
+
self.unit = {}
|
44 |
+
self.register('none', None)
|
45 |
+
|
46 |
+
# general convolution
|
47 |
+
self.register('conv' , nn.Conv2d)
|
48 |
+
self.register('bn' , nn.BatchNorm2d)
|
49 |
+
self.register('relu' , nn.ReLU)
|
50 |
+
self.register('relu6' , nn.ReLU6)
|
51 |
+
self.register('lrelu' , nn.LeakyReLU)
|
52 |
+
self.register('dropout' , nn.Dropout)
|
53 |
+
self.register('dropout2d', nn.Dropout2d)
|
54 |
+
self.register('sine', Sine)
|
55 |
+
self.register('relusine', ReLUSine)
|
56 |
+
|
57 |
+
def register(self,
|
58 |
+
name,
|
59 |
+
unitf,):
|
60 |
+
|
61 |
+
self.unit[name] = unitf
|
62 |
+
|
63 |
+
def __call__(self, name):
|
64 |
+
if name is None:
|
65 |
+
return None
|
66 |
+
i = name.find('(')
|
67 |
+
i = len(name) if i==-1 else i
|
68 |
+
t = name[:i]
|
69 |
+
f = self.unit[t]
|
70 |
+
args = name[i:].strip('()')
|
71 |
+
if len(args) == 0:
|
72 |
+
args = {}
|
73 |
+
return f
|
74 |
+
else:
|
75 |
+
args = args.split('=')
|
76 |
+
args = [[','.join(i.split(',')[:-1]), i.split(',')[-1]] for i in args]
|
77 |
+
args = list(itertools.chain.from_iterable(args))
|
78 |
+
args = [i.strip() for i in args if len(i)>0]
|
79 |
+
kwargs = {}
|
80 |
+
for k, v in zip(args[::2], args[1::2]):
|
81 |
+
if v[0]=='(' and v[-1]==')':
|
82 |
+
kwargs[k] = tuple([str2value(i) for i in v.strip('()').split(',')])
|
83 |
+
elif v[0]=='[' and v[-1]==']':
|
84 |
+
kwargs[k] = [str2value(i) for i in v.strip('[]').split(',')]
|
85 |
+
else:
|
86 |
+
kwargs[k] = str2value(v)
|
87 |
+
return functools.partial(f, **kwargs)
|
88 |
+
|
89 |
+
def register(name):
|
90 |
+
def wrapper(class_):
|
91 |
+
get_unit().register(name, class_)
|
92 |
+
return class_
|
93 |
+
return wrapper
|
94 |
+
|
95 |
+
class Sine(object):
|
96 |
+
def __init__(self, freq, gain=1):
|
97 |
+
self.freq = freq
|
98 |
+
self.gain = gain
|
99 |
+
self.repr = 'sine(freq={}, gain={})'.format(freq, gain)
|
100 |
+
|
101 |
+
def __call__(self, x, gain=1):
|
102 |
+
act_gain = self.gain * gain
|
103 |
+
return torch.sin(self.freq * x) * act_gain
|
104 |
+
|
105 |
+
def __repr__(self,):
|
106 |
+
return self.repr
|
107 |
+
|
108 |
+
class ReLUSine(nn.Module):
|
109 |
+
def __init(self):
|
110 |
+
super().__init__()
|
111 |
+
|
112 |
+
def forward(self, input):
|
113 |
+
a = torch.sin(30 * input)
|
114 |
+
b = nn.ReLU(inplace=False)(input)
|
115 |
+
return a+b
|
116 |
+
|
117 |
+
@register('lrelu_agc')
|
118 |
+
# class lrelu_agc(nn.Module):
|
119 |
+
class lrelu_agc(object):
|
120 |
+
"""
|
121 |
+
The lrelu layer with alpha, gain and clamp
|
122 |
+
"""
|
123 |
+
def __init__(self, alpha=0.1, gain=1, clamp=None):
|
124 |
+
# super().__init__()
|
125 |
+
self.alpha = alpha
|
126 |
+
if gain == 'sqrt_2':
|
127 |
+
self.gain = np.sqrt(2)
|
128 |
+
else:
|
129 |
+
self.gain = gain
|
130 |
+
self.clamp = clamp
|
131 |
+
self.repr = 'lrelu_agc(alpha={}, gain={}, clamp={})'.format(
|
132 |
+
alpha, gain, clamp)
|
133 |
+
|
134 |
+
# def forward(self, x, gain=1):
|
135 |
+
def __call__(self, x, gain=1):
|
136 |
+
x = F.leaky_relu(x, negative_slope=self.alpha, inplace=True)
|
137 |
+
act_gain = self.gain * gain
|
138 |
+
act_clamp = self.clamp * gain if self.clamp is not None else None
|
139 |
+
if act_gain != 1:
|
140 |
+
x = x * act_gain
|
141 |
+
if act_clamp is not None:
|
142 |
+
x = x.clamp(-act_clamp, act_clamp)
|
143 |
+
return x
|
144 |
+
|
145 |
+
def __repr__(self,):
|
146 |
+
return self.repr
|
147 |
+
|
148 |
+
####################
|
149 |
+
# spatial encoding #
|
150 |
+
####################
|
151 |
+
|
152 |
+
@register('se')
|
153 |
+
class SpatialEncoding(nn.Module):
|
154 |
+
def __init__(self,
|
155 |
+
in_dim,
|
156 |
+
out_dim,
|
157 |
+
sigma = 6,
|
158 |
+
cat_input=True,
|
159 |
+
require_grad=False,):
|
160 |
+
|
161 |
+
super().__init__()
|
162 |
+
assert out_dim % (2*in_dim) == 0, "dimension must be dividable"
|
163 |
+
|
164 |
+
n = out_dim // 2 // in_dim
|
165 |
+
m = 2**np.linspace(0, sigma, n)
|
166 |
+
m = np.stack([m] + [np.zeros_like(m)]*(in_dim-1), axis=-1)
|
167 |
+
m = np.concatenate([np.roll(m, i, axis=-1) for i in range(in_dim)], axis=0)
|
168 |
+
self.emb = torch.FloatTensor(m)
|
169 |
+
if require_grad:
|
170 |
+
self.emb = nn.Parameter(self.emb, requires_grad=True)
|
171 |
+
self.in_dim = in_dim
|
172 |
+
self.out_dim = out_dim
|
173 |
+
self.sigma = sigma
|
174 |
+
self.cat_input = cat_input
|
175 |
+
self.require_grad = require_grad
|
176 |
+
|
177 |
+
def forward(self, x, format='[n x c]'):
|
178 |
+
"""
|
179 |
+
Args:
|
180 |
+
x: [n x m1],
|
181 |
+
m1 usually is 2
|
182 |
+
Outputs:
|
183 |
+
y: [n x m2]
|
184 |
+
m2 dimention number
|
185 |
+
"""
|
186 |
+
if format == '[bs x c x 2D]':
|
187 |
+
xshape = x.shape
|
188 |
+
x = x.permute(0, 2, 3, 1).contiguous()
|
189 |
+
x = x.view(-1, x.size(-1))
|
190 |
+
elif format == '[n x c]':
|
191 |
+
pass
|
192 |
+
else:
|
193 |
+
raise ValueError
|
194 |
+
|
195 |
+
if not self.require_grad:
|
196 |
+
self.emb = self.emb.to(x.device)
|
197 |
+
y = torch.mm(x, self.emb.T)
|
198 |
+
if self.cat_input:
|
199 |
+
z = torch.cat([x, torch.sin(y), torch.cos(y)], dim=-1)
|
200 |
+
else:
|
201 |
+
z = torch.cat([torch.sin(y), torch.cos(y)], dim=-1)
|
202 |
+
|
203 |
+
if format == '[bs x c x 2D]':
|
204 |
+
z = z.view(xshape[0], xshape[2], xshape[3], -1)
|
205 |
+
z = z.permute(0, 3, 1, 2).contiguous()
|
206 |
+
return z
|
207 |
+
|
208 |
+
def extra_repr(self):
|
209 |
+
outstr = 'SpatialEncoding (in={}, out={}, sigma={}, cat_input={}, require_grad={})'.format(
|
210 |
+
self.in_dim, self.out_dim, self.sigma, self.cat_input, self.require_grad)
|
211 |
+
return outstr
|
212 |
+
|
213 |
+
@register('rffe')
|
214 |
+
class RFFEncoding(SpatialEncoding):
|
215 |
+
"""
|
216 |
+
Random Fourier Features
|
217 |
+
"""
|
218 |
+
def __init__(self,
|
219 |
+
in_dim,
|
220 |
+
out_dim,
|
221 |
+
sigma = 6,
|
222 |
+
cat_input=True,
|
223 |
+
require_grad=False,):
|
224 |
+
|
225 |
+
super().__init__(in_dim, out_dim, sigma, cat_input, require_grad)
|
226 |
+
n = out_dim // 2
|
227 |
+
m = np.random.normal(0, sigma, size=(n, in_dim))
|
228 |
+
self.emb = torch.FloatTensor(m)
|
229 |
+
if require_grad:
|
230 |
+
self.emb = nn.Parameter(self.emb, requires_grad=True)
|
231 |
+
|
232 |
+
def extra_repr(self):
|
233 |
+
outstr = 'RFFEncoding (in={}, out={}, sigma={}, cat_input={}, require_grad={})'.format(
|
234 |
+
self.in_dim, self.out_dim, self.sigma, self.cat_input, self.require_grad)
|
235 |
+
return outstr
|
236 |
+
|
237 |
+
##########
|
238 |
+
# helper #
|
239 |
+
##########
|
240 |
+
|
241 |
+
def freeze(net):
|
242 |
+
for m in net.modules():
|
243 |
+
if isinstance(m, (
|
244 |
+
nn.BatchNorm2d,
|
245 |
+
nn.SyncBatchNorm,)):
|
246 |
+
# inplace_abn not supported
|
247 |
+
m.eval()
|
248 |
+
for pi in net.parameters():
|
249 |
+
pi.requires_grad = False
|
250 |
+
return net
|
251 |
+
|
252 |
+
def common_init(m):
|
253 |
+
if isinstance(m, (
|
254 |
+
nn.Conv2d,
|
255 |
+
nn.ConvTranspose2d,)):
|
256 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
257 |
+
if m.bias is not None:
|
258 |
+
nn.init.constant_(m.bias, 0)
|
259 |
+
elif isinstance(m, (
|
260 |
+
nn.BatchNorm2d,
|
261 |
+
nn.SyncBatchNorm,)):
|
262 |
+
nn.init.constant_(m.weight, 1)
|
263 |
+
nn.init.constant_(m.bias, 0)
|
264 |
+
else:
|
265 |
+
pass
|
266 |
+
|
267 |
+
def init_module(module):
|
268 |
+
"""
|
269 |
+
Args:
|
270 |
+
module: [nn.module] list or nn.module
|
271 |
+
a list of module to be initialized.
|
272 |
+
"""
|
273 |
+
if isinstance(module, (list, tuple)):
|
274 |
+
module = list(module)
|
275 |
+
else:
|
276 |
+
module = [module]
|
277 |
+
|
278 |
+
for mi in module:
|
279 |
+
for mii in mi.modules():
|
280 |
+
common_init(mii)
|
281 |
+
|
282 |
+
def get_total_param(net):
|
283 |
+
if getattr(net, 'parameters', None) is None:
|
284 |
+
return 0
|
285 |
+
return sum(p.numel() for p in net.parameters())
|
286 |
+
|
287 |
+
def get_total_param_sum(net):
|
288 |
+
if getattr(net, 'parameters', None) is None:
|
289 |
+
return 0
|
290 |
+
with torch.no_grad():
|
291 |
+
s = sum(p.cpu().detach().numpy().sum().item() for p in net.parameters())
|
292 |
+
return s
|
lib/model_zoo/controlnet.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import numpy.random as npr
|
6 |
+
import copy
|
7 |
+
from functools import partial
|
8 |
+
from contextlib import contextmanager
|
9 |
+
from lib.model_zoo.common.get_model import get_model, register
|
10 |
+
from lib.log_service import print_log
|
11 |
+
|
12 |
+
from .openaimodel import \
|
13 |
+
TimestepEmbedSequential, conv_nd, zero_module, \
|
14 |
+
ResBlock, AttentionBlock, SpatialTransformer, \
|
15 |
+
Downsample, timestep_embedding
|
16 |
+
|
17 |
+
####################
|
18 |
+
# preprocess depth #
|
19 |
+
####################
|
20 |
+
|
21 |
+
# depth_model = None
|
22 |
+
|
23 |
+
# def unload_midas_model():
|
24 |
+
# global depth_model
|
25 |
+
# if depth_model is not None:
|
26 |
+
# depth_model = depth_model.cpu()
|
27 |
+
|
28 |
+
# def apply_midas(input_image, a=np.pi*2.0, bg_th=0.1, device='cpu'):
|
29 |
+
# import cv2
|
30 |
+
# from einops import rearrange
|
31 |
+
# from .controlnet_annotators.midas import MiDaSInference
|
32 |
+
# global depth_model
|
33 |
+
# if depth_model is None:
|
34 |
+
# depth_model = MiDaSInference(model_type="dpt_hybrid")
|
35 |
+
# depth_model = depth_model.to(device)
|
36 |
+
|
37 |
+
# assert input_image.ndim == 3
|
38 |
+
# image_depth = input_image
|
39 |
+
# with torch.no_grad():
|
40 |
+
# image_depth = torch.from_numpy(image_depth).float()
|
41 |
+
# image_depth = image_depth.to(device)
|
42 |
+
# image_depth = image_depth / 127.5 - 1.0
|
43 |
+
# image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
44 |
+
# depth = depth_model(image_depth)[0]
|
45 |
+
|
46 |
+
# depth_pt = depth.clone()
|
47 |
+
# depth_pt -= torch.min(depth_pt)
|
48 |
+
# depth_pt /= torch.max(depth_pt)
|
49 |
+
# depth_pt = depth_pt.cpu().numpy()
|
50 |
+
# depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
51 |
+
|
52 |
+
# depth_np = depth.cpu().numpy()
|
53 |
+
# x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
54 |
+
# y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
55 |
+
# z = np.ones_like(x) * a
|
56 |
+
# x[depth_pt < bg_th] = 0
|
57 |
+
# y[depth_pt < bg_th] = 0
|
58 |
+
# normal = np.stack([x, y, z], axis=2)
|
59 |
+
# normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
60 |
+
# normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
61 |
+
|
62 |
+
# return depth_image, normal_image
|
63 |
+
|
64 |
+
|
65 |
+
@register('controlnet')
|
66 |
+
class ControlNet(nn.Module):
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
image_size,
|
70 |
+
in_channels,
|
71 |
+
model_channels,
|
72 |
+
hint_channels,
|
73 |
+
num_res_blocks,
|
74 |
+
attention_resolutions,
|
75 |
+
dropout=0,
|
76 |
+
channel_mult=(1, 2, 4, 8),
|
77 |
+
conv_resample=True,
|
78 |
+
dims=2,
|
79 |
+
use_checkpoint=False,
|
80 |
+
use_fp16=False,
|
81 |
+
num_heads=-1,
|
82 |
+
num_head_channels=-1,
|
83 |
+
num_heads_upsample=-1,
|
84 |
+
use_scale_shift_norm=False,
|
85 |
+
resblock_updown=False,
|
86 |
+
use_new_attention_order=False,
|
87 |
+
use_spatial_transformer=False, # custom transformer support
|
88 |
+
transformer_depth=1, # custom transformer support
|
89 |
+
context_dim=None, # custom transformer support
|
90 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
91 |
+
legacy=True,
|
92 |
+
disable_self_attentions=None,
|
93 |
+
num_attention_blocks=None,
|
94 |
+
disable_middle_self_attn=False,
|
95 |
+
use_linear_in_transformer=False,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
if use_spatial_transformer:
|
99 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
100 |
+
|
101 |
+
if context_dim is not None:
|
102 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
103 |
+
from omegaconf.listconfig import ListConfig
|
104 |
+
if type(context_dim) == ListConfig:
|
105 |
+
context_dim = list(context_dim)
|
106 |
+
|
107 |
+
if num_heads_upsample == -1:
|
108 |
+
num_heads_upsample = num_heads
|
109 |
+
|
110 |
+
if num_heads == -1:
|
111 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
112 |
+
|
113 |
+
if num_head_channels == -1:
|
114 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
115 |
+
|
116 |
+
self.dims = dims
|
117 |
+
self.image_size = image_size
|
118 |
+
self.in_channels = in_channels
|
119 |
+
self.model_channels = model_channels
|
120 |
+
if isinstance(num_res_blocks, int):
|
121 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
122 |
+
else:
|
123 |
+
if len(num_res_blocks) != len(channel_mult):
|
124 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
125 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
126 |
+
self.num_res_blocks = num_res_blocks
|
127 |
+
if disable_self_attentions is not None:
|
128 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
129 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
130 |
+
if num_attention_blocks is not None:
|
131 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
132 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
133 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
134 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
135 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
136 |
+
f"attention will still not be set.")
|
137 |
+
|
138 |
+
self.attention_resolutions = attention_resolutions
|
139 |
+
self.dropout = dropout
|
140 |
+
self.channel_mult = channel_mult
|
141 |
+
self.conv_resample = conv_resample
|
142 |
+
self.use_checkpoint = use_checkpoint
|
143 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
144 |
+
self.num_heads = num_heads
|
145 |
+
self.num_head_channels = num_head_channels
|
146 |
+
self.num_heads_upsample = num_heads_upsample
|
147 |
+
self.predict_codebook_ids = n_embed is not None
|
148 |
+
|
149 |
+
time_embed_dim = model_channels * 4
|
150 |
+
self.time_embed = nn.Sequential(
|
151 |
+
nn.Linear(model_channels, time_embed_dim),
|
152 |
+
nn.SiLU(),
|
153 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
154 |
+
)
|
155 |
+
|
156 |
+
self.input_blocks = nn.ModuleList(
|
157 |
+
[
|
158 |
+
TimestepEmbedSequential(
|
159 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
160 |
+
)
|
161 |
+
]
|
162 |
+
)
|
163 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
164 |
+
|
165 |
+
self.input_hint_block = TimestepEmbedSequential(
|
166 |
+
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
167 |
+
nn.SiLU(),
|
168 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
169 |
+
nn.SiLU(),
|
170 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
171 |
+
nn.SiLU(),
|
172 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
173 |
+
nn.SiLU(),
|
174 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
175 |
+
nn.SiLU(),
|
176 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
177 |
+
nn.SiLU(),
|
178 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
179 |
+
nn.SiLU(),
|
180 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
181 |
+
)
|
182 |
+
|
183 |
+
self._feature_size = model_channels
|
184 |
+
input_block_chans = [model_channels]
|
185 |
+
ch = model_channels
|
186 |
+
ds = 1
|
187 |
+
for level, mult in enumerate(channel_mult):
|
188 |
+
for nr in range(self.num_res_blocks[level]):
|
189 |
+
layers = [
|
190 |
+
ResBlock(
|
191 |
+
ch,
|
192 |
+
time_embed_dim,
|
193 |
+
dropout,
|
194 |
+
out_channels=mult * model_channels,
|
195 |
+
dims=dims,
|
196 |
+
use_checkpoint=use_checkpoint,
|
197 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
198 |
+
)
|
199 |
+
]
|
200 |
+
ch = mult * model_channels
|
201 |
+
if ds in attention_resolutions:
|
202 |
+
if num_head_channels == -1:
|
203 |
+
dim_head = ch // num_heads
|
204 |
+
else:
|
205 |
+
num_heads = ch // num_head_channels
|
206 |
+
dim_head = num_head_channels
|
207 |
+
if legacy:
|
208 |
+
# num_heads = 1
|
209 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
210 |
+
if disable_self_attentions is not None:
|
211 |
+
disabled_sa = disable_self_attentions[level]
|
212 |
+
else:
|
213 |
+
disabled_sa = False
|
214 |
+
|
215 |
+
if (num_attention_blocks is None) or nr < num_attention_blocks[level]:
|
216 |
+
layers.append(
|
217 |
+
AttentionBlock(
|
218 |
+
ch,
|
219 |
+
use_checkpoint=use_checkpoint,
|
220 |
+
num_heads=num_heads,
|
221 |
+
num_head_channels=dim_head,
|
222 |
+
use_new_attention_order=use_new_attention_order,
|
223 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
224 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
225 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
226 |
+
use_checkpoint=use_checkpoint
|
227 |
+
)
|
228 |
+
)
|
229 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
230 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
231 |
+
self._feature_size += ch
|
232 |
+
input_block_chans.append(ch)
|
233 |
+
if level != len(channel_mult) - 1:
|
234 |
+
out_ch = ch
|
235 |
+
self.input_blocks.append(
|
236 |
+
TimestepEmbedSequential(
|
237 |
+
ResBlock(
|
238 |
+
ch,
|
239 |
+
time_embed_dim,
|
240 |
+
dropout,
|
241 |
+
out_channels=out_ch,
|
242 |
+
dims=dims,
|
243 |
+
use_checkpoint=use_checkpoint,
|
244 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
245 |
+
down=True,
|
246 |
+
)
|
247 |
+
if resblock_updown
|
248 |
+
else Downsample(
|
249 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
250 |
+
)
|
251 |
+
)
|
252 |
+
)
|
253 |
+
ch = out_ch
|
254 |
+
input_block_chans.append(ch)
|
255 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
256 |
+
ds *= 2
|
257 |
+
self._feature_size += ch
|
258 |
+
|
259 |
+
if num_head_channels == -1:
|
260 |
+
dim_head = ch // num_heads
|
261 |
+
else:
|
262 |
+
num_heads = ch // num_head_channels
|
263 |
+
dim_head = num_head_channels
|
264 |
+
if legacy:
|
265 |
+
# num_heads = 1
|
266 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
267 |
+
self.middle_block = TimestepEmbedSequential(
|
268 |
+
ResBlock(
|
269 |
+
ch,
|
270 |
+
time_embed_dim,
|
271 |
+
dropout,
|
272 |
+
dims=dims,
|
273 |
+
use_checkpoint=use_checkpoint,
|
274 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
275 |
+
),
|
276 |
+
AttentionBlock(
|
277 |
+
ch,
|
278 |
+
use_checkpoint=use_checkpoint,
|
279 |
+
num_heads=num_heads,
|
280 |
+
num_head_channels=dim_head,
|
281 |
+
use_new_attention_order=use_new_attention_order,
|
282 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
283 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
284 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
285 |
+
use_checkpoint=use_checkpoint
|
286 |
+
),
|
287 |
+
ResBlock(
|
288 |
+
ch,
|
289 |
+
time_embed_dim,
|
290 |
+
dropout,
|
291 |
+
dims=dims,
|
292 |
+
use_checkpoint=use_checkpoint,
|
293 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
294 |
+
),
|
295 |
+
)
|
296 |
+
self.middle_block_out = self.make_zero_conv(ch)
|
297 |
+
self._feature_size += ch
|
298 |
+
|
299 |
+
def make_zero_conv(self, channels):
|
300 |
+
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
301 |
+
|
302 |
+
def forward(self, x, hint, timesteps, context, **kwargs):
|
303 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
304 |
+
t_emb = t_emb.to(x.dtype)
|
305 |
+
emb = self.time_embed(t_emb)
|
306 |
+
|
307 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
308 |
+
|
309 |
+
outs = []
|
310 |
+
|
311 |
+
h = x
|
312 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
313 |
+
if guided_hint is not None:
|
314 |
+
h = module(h, emb, context)
|
315 |
+
h += guided_hint
|
316 |
+
guided_hint = None
|
317 |
+
else:
|
318 |
+
h = module(h, emb, context)
|
319 |
+
outs.append(zero_conv(h, emb, context))
|
320 |
+
|
321 |
+
h = self.middle_block(h, emb, context)
|
322 |
+
outs.append(self.middle_block_out(h, emb, context))
|
323 |
+
|
324 |
+
return outs
|
325 |
+
|
326 |
+
def get_device(self):
|
327 |
+
return self.time_embed[0].weight.device
|
328 |
+
|
329 |
+
def get_dtype(self):
|
330 |
+
return self.time_embed[0].weight.dtype
|
331 |
+
|
332 |
+
def preprocess(self, x, type='canny', **kwargs):
|
333 |
+
import torchvision.transforms as tvtrans
|
334 |
+
if isinstance(x, str):
|
335 |
+
import PIL.Image
|
336 |
+
device, dtype = self.get_device(), self.get_dtype()
|
337 |
+
x_list = [PIL.Image.open(x)]
|
338 |
+
elif isinstance(x, torch.Tensor):
|
339 |
+
x_list = [tvtrans.ToPILImage()(xi) for xi in x]
|
340 |
+
device, dtype = x.device, x.dtype
|
341 |
+
else:
|
342 |
+
assert False
|
343 |
+
|
344 |
+
if type == 'none' or type is None:
|
345 |
+
return None
|
346 |
+
|
347 |
+
elif type in ['input', 'shuffle_v11e']:
|
348 |
+
y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list])
|
349 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
350 |
+
return y_torch
|
351 |
+
|
352 |
+
elif type in ['canny', 'canny_v11p']:
|
353 |
+
low_threshold = kwargs.pop('low_threshold', 100)
|
354 |
+
high_threshold = kwargs.pop('high_threshold', 200)
|
355 |
+
from .controlnet_annotator.canny import apply_canny
|
356 |
+
y_list = [apply_canny(np.array(xi), low_threshold, high_threshold) for xi in x_list]
|
357 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
358 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
359 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
360 |
+
return y_torch
|
361 |
+
|
362 |
+
elif type == 'depth':
|
363 |
+
from .controlnet_annotator.midas import apply_midas
|
364 |
+
y_list, _ = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, device=device) for xi in x_list])
|
365 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
366 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
367 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
368 |
+
return y_torch
|
369 |
+
|
370 |
+
elif type in ['hed', 'softedge_v11p']:
|
371 |
+
from .controlnet_annotator.hed import apply_hed
|
372 |
+
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
|
373 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
374 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
375 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
376 |
+
return y_torch
|
377 |
+
|
378 |
+
elif type in ['mlsd', 'mlsd_v11p']:
|
379 |
+
thr_v = kwargs.pop('thr_v', 0.1)
|
380 |
+
thr_d = kwargs.pop('thr_d', 0.1)
|
381 |
+
from .controlnet_annotator.mlsd import apply_mlsd
|
382 |
+
y_list = [apply_mlsd(np.array(xi), thr_v=thr_v, thr_d=thr_d, device=device) for xi in x_list]
|
383 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
384 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
385 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
386 |
+
return y_torch
|
387 |
+
|
388 |
+
elif type == 'normal':
|
389 |
+
bg_th = kwargs.pop('bg_th', 0.4)
|
390 |
+
from .controlnet_annotator.midas import apply_midas
|
391 |
+
_, y_list = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, bg_th=bg_th, device=device) for xi in x_list])
|
392 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
393 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
394 |
+
return y_torch
|
395 |
+
|
396 |
+
elif type in ['openpose', 'openpose_v11p']:
|
397 |
+
from .controlnet_annotator.openpose import OpenposeModel
|
398 |
+
from functools import partial
|
399 |
+
wrapper = OpenposeModel()
|
400 |
+
apply_openpose = partial(
|
401 |
+
wrapper.run_model, include_body=True, include_hand=False, include_face=False,
|
402 |
+
json_pose_callback=None, device=device)
|
403 |
+
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
404 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
405 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
406 |
+
return y_torch
|
407 |
+
|
408 |
+
elif type in ['openpose_withface', 'openpose_withface_v11p']:
|
409 |
+
from .controlnet_annotator.openpose import OpenposeModel
|
410 |
+
from functools import partial
|
411 |
+
wrapper = OpenposeModel()
|
412 |
+
apply_openpose = partial(
|
413 |
+
wrapper.run_model, include_body=True, include_hand=False, include_face=True,
|
414 |
+
json_pose_callback=None, device=device)
|
415 |
+
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
416 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
417 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
418 |
+
return y_torch
|
419 |
+
|
420 |
+
elif type in ['openpose_withfacehand', 'openpose_withfacehand_v11p']:
|
421 |
+
from .controlnet_annotator.openpose import OpenposeModel
|
422 |
+
from functools import partial
|
423 |
+
wrapper = OpenposeModel()
|
424 |
+
apply_openpose = partial(
|
425 |
+
wrapper.run_model, include_body=True, include_hand=True, include_face=True,
|
426 |
+
json_pose_callback=None, device=device)
|
427 |
+
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
428 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
429 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
430 |
+
return y_torch
|
431 |
+
|
432 |
+
elif type == 'scribble':
|
433 |
+
method = kwargs.pop('method', 'pidinet')
|
434 |
+
|
435 |
+
import cv2
|
436 |
+
def nms(x, t, s):
|
437 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
438 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
439 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
440 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
441 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
442 |
+
y = np.zeros_like(x)
|
443 |
+
for f in [f1, f2, f3, f4]:
|
444 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
445 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
446 |
+
z[y > t] = 255
|
447 |
+
return z
|
448 |
+
|
449 |
+
def make_scribble(result):
|
450 |
+
result = nms(result, 127, 3.0)
|
451 |
+
result = cv2.GaussianBlur(result, (0, 0), 3.0)
|
452 |
+
result[result > 4] = 255
|
453 |
+
result[result < 255] = 0
|
454 |
+
return result
|
455 |
+
|
456 |
+
if method == 'hed':
|
457 |
+
from .controlnet_annotator.hed import apply_hed
|
458 |
+
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
|
459 |
+
y_list = [make_scribble(yi) for yi in y_list]
|
460 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
461 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
462 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
463 |
+
return y_torch
|
464 |
+
|
465 |
+
elif method == 'pidinet':
|
466 |
+
from .controlnet_annotator.pidinet import apply_pidinet
|
467 |
+
y_list = [apply_pidinet(np.array(xi), device=device) for xi in x_list]
|
468 |
+
y_list = [make_scribble(yi) for yi in y_list]
|
469 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
470 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
471 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
472 |
+
return y_torch
|
473 |
+
|
474 |
+
elif method == 'xdog':
|
475 |
+
threshold = kwargs.pop('threshold', 32)
|
476 |
+
def apply_scribble_xdog(img):
|
477 |
+
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
|
478 |
+
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
|
479 |
+
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
|
480 |
+
result = np.zeros_like(img, dtype=np.uint8)
|
481 |
+
result[2 * (255 - dog) > threshold] = 255
|
482 |
+
return result
|
483 |
+
|
484 |
+
y_list = [apply_scribble_xdog(np.array(xi), device=device) for xi in x_list]
|
485 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
486 |
+
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
|
487 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
488 |
+
return y_torch
|
489 |
+
|
490 |
+
else:
|
491 |
+
raise ValueError
|
492 |
+
|
493 |
+
elif type == 'seg':
|
494 |
+
method = kwargs.pop('method', 'ufade20k')
|
495 |
+
if method == 'ufade20k':
|
496 |
+
from .controlnet_annotator.uniformer import apply_uniformer
|
497 |
+
y_list = [apply_uniformer(np.array(xi), palette='ade20k', device=device) for xi in x_list]
|
498 |
+
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
499 |
+
y_torch = y_torch.to(device).to(torch.float32)
|
500 |
+
return y_torch
|
501 |
+
|
502 |
+
else:
|
503 |
+
raise ValueError
|
lib/model_zoo/controlnet_annotator/canny/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
def apply_canny(img, low_threshold, high_threshold):
|
5 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
lib/model_zoo/controlnet_annotator/hed/__init__.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
2 |
+
# Please use this implementation in your products
|
3 |
+
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
4 |
+
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
5 |
+
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
6 |
+
# and in this way it works better for gradio's RGB protocol
|
7 |
+
|
8 |
+
import os
|
9 |
+
import cv2
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from einops import rearrange
|
14 |
+
import os
|
15 |
+
|
16 |
+
models_path = 'pretrained/controlnet/preprocess'
|
17 |
+
|
18 |
+
def safe_step(x, step=2):
|
19 |
+
y = x.astype(np.float32) * float(step + 1)
|
20 |
+
y = y.astype(np.int32).astype(np.float32) / float(step)
|
21 |
+
return y
|
22 |
+
|
23 |
+
class DoubleConvBlock(torch.nn.Module):
|
24 |
+
def __init__(self, input_channel, output_channel, layer_number):
|
25 |
+
super().__init__()
|
26 |
+
self.convs = torch.nn.Sequential()
|
27 |
+
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
28 |
+
for i in range(1, layer_number):
|
29 |
+
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
30 |
+
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
31 |
+
|
32 |
+
def __call__(self, x, down_sampling=False):
|
33 |
+
h = x
|
34 |
+
if down_sampling:
|
35 |
+
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
36 |
+
for conv in self.convs:
|
37 |
+
h = conv(h)
|
38 |
+
h = torch.nn.functional.relu(h)
|
39 |
+
return h, self.projection(h)
|
40 |
+
|
41 |
+
|
42 |
+
class ControlNetHED_Apache2(torch.nn.Module):
|
43 |
+
def __init__(self):
|
44 |
+
super().__init__()
|
45 |
+
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
46 |
+
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
47 |
+
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
48 |
+
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
49 |
+
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
50 |
+
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
51 |
+
|
52 |
+
def __call__(self, x):
|
53 |
+
h = x - self.norm
|
54 |
+
h, projection1 = self.block1(h)
|
55 |
+
h, projection2 = self.block2(h, down_sampling=True)
|
56 |
+
h, projection3 = self.block3(h, down_sampling=True)
|
57 |
+
h, projection4 = self.block4(h, down_sampling=True)
|
58 |
+
h, projection5 = self.block5(h, down_sampling=True)
|
59 |
+
return projection1, projection2, projection3, projection4, projection5
|
60 |
+
|
61 |
+
|
62 |
+
netNetwork = None
|
63 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
64 |
+
modeldir = os.path.join(models_path, "hed")
|
65 |
+
old_modeldir = os.path.dirname(os.path.realpath(__file__))
|
66 |
+
|
67 |
+
|
68 |
+
def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
|
69 |
+
"""Load file form http url, will download models if necessary.
|
70 |
+
|
71 |
+
Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
|
72 |
+
|
73 |
+
Args:
|
74 |
+
url (str): URL to be downloaded.
|
75 |
+
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
|
76 |
+
Default: None.
|
77 |
+
progress (bool): Whether to show the download progress. Default: True.
|
78 |
+
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
str: The path to the downloaded file.
|
82 |
+
"""
|
83 |
+
from torch.hub import download_url_to_file, get_dir
|
84 |
+
from urllib.parse import urlparse
|
85 |
+
if model_dir is None: # use the pytorch hub_dir
|
86 |
+
hub_dir = get_dir()
|
87 |
+
model_dir = os.path.join(hub_dir, 'checkpoints')
|
88 |
+
|
89 |
+
os.makedirs(model_dir, exist_ok=True)
|
90 |
+
|
91 |
+
parts = urlparse(url)
|
92 |
+
filename = os.path.basename(parts.path)
|
93 |
+
if file_name is not None:
|
94 |
+
filename = file_name
|
95 |
+
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
96 |
+
if not os.path.exists(cached_file):
|
97 |
+
print(f'Downloading: "{url}" to {cached_file}\n')
|
98 |
+
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
|
99 |
+
return cached_file
|
100 |
+
|
101 |
+
|
102 |
+
def apply_hed(input_image, is_safe=False, device='cpu'):
|
103 |
+
global netNetwork
|
104 |
+
if netNetwork is None:
|
105 |
+
modelpath = os.path.join(modeldir, "ControlNetHED.pth")
|
106 |
+
old_modelpath = os.path.join(old_modeldir, "ControlNetHED.pth")
|
107 |
+
if os.path.exists(old_modelpath):
|
108 |
+
modelpath = old_modelpath
|
109 |
+
elif not os.path.exists(modelpath):
|
110 |
+
load_file_from_url(remote_model_path, model_dir=modeldir)
|
111 |
+
netNetwork = ControlNetHED_Apache2().to(device)
|
112 |
+
netNetwork.load_state_dict(torch.load(modelpath, map_location='cpu'))
|
113 |
+
netNetwork.to(device).float().eval()
|
114 |
+
|
115 |
+
assert input_image.ndim == 3
|
116 |
+
H, W, C = input_image.shape
|
117 |
+
with torch.no_grad():
|
118 |
+
image_hed = torch.from_numpy(input_image.copy()).float().to(device)
|
119 |
+
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
120 |
+
edges = netNetwork(image_hed)
|
121 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
122 |
+
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
123 |
+
edges = np.stack(edges, axis=2)
|
124 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
125 |
+
if is_safe:
|
126 |
+
edge = safe_step(edge)
|
127 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
128 |
+
return edge
|
129 |
+
|
130 |
+
|
131 |
+
def unload_hed_model():
|
132 |
+
global netNetwork
|
133 |
+
if netNetwork is not None:
|
134 |
+
netNetwork.cpu()
|