Spaces:
Runtime error
Runtime error
File size: 23,356 Bytes
515f781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
# cudnn.enabled = True
# cudnn.benchmark = True
import torch.distributed as dist
import torch.multiprocessing as mp
import os
import os.path as osp
import sys
import numpy as np
import random
import pprint
import timeit
import time
import copy
import matplotlib.pyplot as plt
from .cfg_holder import cfg_unique_holder as cfguh
from .data_factory import \
get_dataset, collate, \
get_loader, \
get_transform, \
get_estimator, \
get_formatter, \
get_sampler
from .model_zoo import \
get_model, get_optimizer, get_scheduler
from .log_service import print_log, distributed_log_manager
from .evaluator import get_evaluator
from . import sync
class train_stage(object):
"""
This is a template for a train stage,
(can be either train or test or anything)
Usually, it takes RANK
one dataloader, one model, one optimizer, one scheduler.
But it is not limited to these parameters.
"""
def __init__(self):
self.nested_eval_stage = None
self.rv_keep = None
def is_better(self, x):
return (self.rv_keep is None) or (x>self.rv_keep)
def set_model(self, net, mode):
if mode == 'train':
return net.train()
elif mode == 'eval':
return net.eval()
else:
raise ValueError
def __call__(self,
**paras):
cfg = cfguh().cfg
cfgt = cfg.train
logm = distributed_log_manager()
epochn, itern_local, itern, samplen = 0, 0, 0, 0
step_type = cfgt.get('step_type', 'iter')
assert step_type in ['epoch', 'iter', 'sample'], \
'Step type must be in [epoch, iter, sample]'
step_num = cfgt.get('step_num' , None)
gradacc_every = cfgt.get('gradacc_every', 1 )
log_every = cfgt.get('log_every' , None)
ckpt_every = cfgt.get('ckpt_every' , None)
eval_start = cfgt.get('eval_start' , 0 )
eval_every = cfgt.get('eval_every' , None)
if paras.get('resume_step', None) is not None:
resume_step = paras['resume_step']
assert step_type == resume_step['type']
epochn = resume_step['epochn']
itern = resume_step['itern']
itern_local = itern * gradacc_every
samplen = resume_step['samplen']
del paras['resume_step']
trainloader = paras['trainloader']
if trainloader is None:
import itertools
trainloader = itertools.cycle([None])
optimizer = paras['optimizer']
scheduler = paras['scheduler']
net = paras['net']
GRANK, LRANK, NRANK = sync.get_rank('all')
GWSIZE, LWSIZE, NODES = sync.get_world_size('all')
weight_path = osp.join(cfgt.log_dir, 'weight')
if (GRANK==0) and (not osp.isdir(weight_path)):
os.makedirs(weight_path)
if (GRANK==0) and (cfgt.save_init_model):
self.save(net, is_init=True, step=0, optimizer=optimizer)
epoch_time = timeit.default_timer()
end_flag = False
net.train()
while True:
if step_type == 'epoch':
lr = scheduler[epochn] if scheduler is not None else None
for batch in trainloader:
# so first element of batch (usually image) can be [tensor]
if batch is None:
bs = cfgt.batch_size_per_gpu
elif not isinstance(batch[0], list):
bs = batch[0].shape[0]
else:
bs = len(batch[0])
if cfgt.skip_partial_batch and (bs != cfgt.batch_size_per_gpu):
continue
itern_local_next = itern_local + 1
samplen_next = samplen + bs*GWSIZE
if step_type == 'iter':
lr = scheduler[itern] if scheduler is not None else None
grad_update = itern_local%gradacc_every==(gradacc_every-1)
elif step_type == 'sample':
lr = scheduler[samplen] if scheduler is not None else None
# TODO:
# grad_update = samplen%gradacc_every==(gradacc_every-1)
itern_next = itern + 1 if grad_update else itern
# timeDebug = timeit.default_timer()
paras_new = self.main(
batch=batch,
lr=lr,
itern_local=itern_local,
itern=itern,
epochn=epochn,
samplen=samplen,
isinit=False,
grad_update=grad_update,
**paras)
# print_log(timeit.default_timer() - timeDebug)
paras.update(paras_new)
logm.accumulate(bs, **paras['log_info'])
#######
# log #
#######
display_flag = False
if log_every is not None:
display_i = (itern//log_every) != (itern_next//log_every)
display_s = (samplen//log_every) != (samplen_next//log_every)
display_flag = (display_i and (step_type=='iter')) \
or (display_s and (step_type=='sample'))
if display_flag:
tbstep = itern_next if step_type=='iter' else samplen_next
console_info = logm.train_summary(
itern_next, epochn, samplen_next, lr, tbstep=tbstep)
logm.clear()
print_log(console_info)
########
# eval #
########
eval_flag = False
if (self.nested_eval_stage is not None) and (eval_every is not None) and (NRANK == 0):
if step_type=='iter':
eval_flag = (itern//eval_every) != (itern_next//eval_every)
eval_flag = eval_flag and (itern_next>=eval_start)
eval_flag = eval_flag or itern_local==0
if step_type=='sample':
eval_flag = (samplen//eval_every) != (samplen_next//eval_every)
eval_flag = eval_flag and (samplen_next>=eval_start)
eval_flag = eval_flag or samplen==0
if eval_flag:
eval_cnt = itern_next if step_type=='iter' else samplen_next
net = self.set_model(net, 'eval')
rv = self.nested_eval_stage(
eval_cnt=eval_cnt, **paras)
rv = rv.get('eval_rv', None)
if rv is not None:
logm.tensorboard_log(eval_cnt, rv, mode='eval')
if self.is_better(rv):
self.rv_keep = rv
if GRANK==0:
step = {'epochn':epochn, 'itern':itern_next,
'samplen':samplen_next, 'type':step_type, }
self.save(net, is_best=True, step=step, optimizer=optimizer)
net = self.set_model(net, 'train')
########
# ckpt #
########
ckpt_flag = False
if (GRANK==0) and (ckpt_every is not None):
# not distributed
ckpt_i = (itern//ckpt_every) != (itern_next//ckpt_every)
ckpt_s = (samplen//ckpt_every) != (samplen_next//ckpt_every)
ckpt_flag = (ckpt_i and (step_type=='iter')) \
or (ckpt_s and (step_type=='sample'))
if ckpt_flag:
if step_type == 'iter':
print_log('Checkpoint... {}'.format(itern_next))
step = {'epochn':epochn, 'itern':itern_next,
'samplen':samplen_next, 'type':step_type, }
self.save(net, itern=itern_next, step=step, optimizer=optimizer)
else:
print_log('Checkpoint... {}'.format(samplen_next))
step = {'epochn':epochn, 'itern':itern_next,
'samplen':samplen_next, 'type':step_type, }
self.save(net, samplen=samplen_next, step=step, optimizer=optimizer)
#######
# end #
#######
itern_local = itern_local_next
itern = itern_next
samplen = samplen_next
if step_type is not None:
end_flag = (itern>=step_num and (step_type=='iter')) \
or (samplen>=step_num and (step_type=='sample'))
if end_flag:
break
# loop end
epochn += 1
print_log('Epoch {} time:{:.2f}s.'.format(
epochn, timeit.default_timer()-epoch_time))
epoch_time = timeit.default_timer()
if end_flag:
break
elif step_type != 'epoch':
# This is temporarily added to resolve the data issue
trainloader = self.trick_update_trainloader(trainloader)
continue
#######
# log #
#######
display_flag = False
if (log_every is not None) and (step_type=='epoch'):
display_flag = (epochn==1) or (epochn%log_every==0)
if display_flag:
console_info = logm.train_summary(
itern, epochn, samplen, lr, tbstep=epochn)
logm.clear()
print_log(console_info)
########
# eval #
########
eval_flag = False
if (self.nested_eval_stage is not None) and (eval_every is not None) \
and (step_type=='epoch') and (NRANK==0):
eval_flag = (epochn%eval_every==0) and (itern_next>=eval_start)
eval_flag = (epochn==1) or eval_flag
if eval_flag:
net = self.set_model(net, 'eval')
rv = self.nested_eval_stage(
eval_cnt=epochn,
**paras)['eval_rv']
if rv is not None:
logm.tensorboard_log(epochn, rv, mode='eval')
if self.is_better(rv):
self.rv_keep = rv
if (GRANK==0):
step = {'epochn':epochn, 'itern':itern,
'samplen':samplen, 'type':step_type, }
self.save(net, is_best=True, step=step, optimizer=optimizer)
net = self.set_model(net, 'train')
########
# ckpt #
########
ckpt_flag = False
if (ckpt_every is not None) and (GRANK==0) and (step_type=='epoch'):
# not distributed
ckpt_flag = epochn%ckpt_every==0
if ckpt_flag:
print_log('Checkpoint... {}'.format(itern_next))
step = {'epochn':epochn, 'itern':itern,
'samplen':samplen, 'type':step_type, }
self.save(net, epochn=epochn, step=step, optimizer=optimizer)
#######
# end #
#######
if (step_type=='epoch') and (epochn>=step_num):
break
# loop end
# This is temporarily added to resolve the data issue
trainloader = self.trick_update_trainloader(trainloader)
logm.tensorboard_close()
return {}
def main(self, **paras):
raise NotImplementedError
def trick_update_trainloader(self, trainloader):
return trainloader
def save_model(self, net, path_noext, **paras):
cfgt = cfguh().cfg.train
path = path_noext+'.pth'
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
torch.save(netm.state_dict(), path)
print_log('Saving model file {0}'.format(path))
def save(self, net, itern=None, epochn=None, samplen=None,
is_init=False, is_best=False, is_last=False, **paras):
exid = cfguh().cfg.env.experiment_id
cfgt = cfguh().cfg.train
cfgm = cfguh().cfg.model
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
net_symbol = cfgm.symbol
check = sum([
itern is not None, samplen is not None, epochn is not None,
is_init, is_best, is_last])
assert check<2
if itern is not None:
path_noexp = '{}_{}_iter_{}'.format(exid, net_symbol, itern)
elif samplen is not None:
path_noexp = '{}_{}_samplen_{}'.format(exid, net_symbol, samplen)
elif epochn is not None:
path_noexp = '{}_{}_epoch_{}'.format(exid, net_symbol, epochn)
elif is_init:
path_noexp = '{}_{}_init'.format(exid, net_symbol)
elif is_best:
path_noexp = '{}_{}_best'.format(exid, net_symbol)
elif is_last:
path_noexp = '{}_{}_last'.format(exid, net_symbol)
else:
path_noexp = '{}_{}_default'.format(exid, net_symbol)
path_noexp = osp.join(cfgt.log_dir, 'weight', path_noexp)
self.save_model(net, path_noexp, **paras)
class eval_stage(object):
def __init__(self):
self.evaluator = None
def create_dir(self, path):
grank = sync.get_rank('global')
if (not osp.isdir(path)) and (grank == 0):
os.makedirs(path)
sync.nodewise_sync().barrier()
def __call__(self,
evalloader,
net,
**paras):
cfgt = cfguh().cfg.eval
local_rank = sync.get_rank('local')
if self.evaluator is None:
evaluator = get_evaluator()(cfgt.evaluator)
self.evaluator = evaluator
else:
evaluator = self.evaluator
time_check = timeit.default_timer()
for idx, batch in enumerate(evalloader):
rv = self.main(batch, net)
evaluator.add_batch(**rv)
if cfgt.output_result:
try:
self.output_f(**rv, cnt=paras['eval_cnt'])
except:
self.output_f(**rv)
if idx%cfgt.log_display == cfgt.log_display-1:
print_log('processed.. {}, Time:{:.2f}s'.format(
idx+1, timeit.default_timer() - time_check))
time_check = timeit.default_timer()
# break
evaluator.set_sample_n(len(evalloader.dataset))
eval_rv = evaluator.compute()
if local_rank == 0:
evaluator.one_line_summary()
evaluator.save(cfgt.log_dir)
evaluator.clear_data()
return {
'eval_rv' : eval_rv
}
class exec_container(object):
"""
This is the base functor for all types of executions.
One execution can have multiple stages,
but are only allowed to use the same
config, network, dataloader.
Thus, in most of the cases, one exec_container is one
training/evaluation/demo...
If DPP is in use, this functor should be spawn.
"""
def __init__(self,
cfg,
**kwargs):
self.cfg = cfg
self.registered_stages = []
self.node_rank = None
self.local_rank = None
self.global_rank = None
self.local_world_size = None
self.global_world_size = None
self.nodewise_sync_global_obj = sync.nodewise_sync_global()
def register_stage(self, stage):
self.registered_stages.append(stage)
def __call__(self,
local_rank,
**kwargs):
cfg = self.cfg
cfguh().save_cfg(cfg)
self.node_rank = cfg.env.node_rank
self.local_rank = local_rank
self.nodes = cfg.env.nodes
self.local_world_size = cfg.env.gpu_count
self.global_rank = self.local_rank + self.node_rank * self.local_world_size
self.global_world_size = self.nodes * self.local_world_size
print('init {}/{}'.format(self.global_rank, self.global_world_size))
dist.init_process_group(
backend = cfg.env.dist_backend,
init_method = cfg.env.dist_url,
rank = self.global_rank,
world_size = self.global_world_size,)
torch.cuda.set_device(local_rank)
sync.nodewise_sync().copy_global(self.nodewise_sync_global_obj).local_init()
if isinstance(cfg.env.rnd_seed, int):
random.seed(cfg.env.rnd_seed + self.global_rank + 200)
np.random.seed(cfg.env.rnd_seed + self.global_rank + 100)
torch.manual_seed(cfg.env.rnd_seed + self.global_rank)
time_start = timeit.default_timer()
para = {'itern_total' : 0,}
dl_para = self.prepare_dataloader()
assert isinstance(dl_para, dict)
para.update(dl_para)
md_para = self.prepare_model()
assert isinstance(md_para, dict)
para.update(md_para)
for stage in self.registered_stages:
stage_para = stage(**para)
if stage_para is not None:
para.update(stage_para)
if self.global_rank==0:
self.save_last_model(**para)
print_log(
'Total {:.2f} seconds'.format(timeit.default_timer() - time_start))
dist.destroy_process_group()
def prepare_dataloader(self):
"""
Prepare the dataloader from config.
"""
return {
'trainloader' : None,
'evalloader' : None}
def prepare_model(self):
"""
Prepare the model from config.
"""
return {'net' : None}
def save_last_model(self, **para):
return
def destroy(self):
self.nodewise_sync_global_obj.destroy()
class train(exec_container):
def prepare_dataloader(self):
cfg = cfguh().cfg
trainset = get_dataset()(cfg.train.dataset)
trainloader = None
if trainset is not None:
sampler = get_sampler()(
dataset=trainset, cfg=cfg.train.dataset.get('sampler', 'default_train'))
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size = cfg.train.batch_size_per_gpu,
sampler = sampler,
num_workers = cfg.train.dataset_num_workers_per_gpu,
drop_last = False,
pin_memory = cfg.train.dataset.get('pin_memory', False),
collate_fn = collate(),)
evalloader = None
if 'eval' in cfg:
evalset = get_dataset()(cfg.eval.dataset)
if evalset is not None:
sampler = get_sampler()(
dataset=evalset, cfg=cfg.eval.dataset.get('sampler', 'default_eval'))
evalloader = torch.utils.data.DataLoader(
evalset,
batch_size = cfg.eval.batch_size_per_gpu,
sampler = sampler,
num_workers = cfg.eval.dataset_num_workers_per_gpu,
drop_last = False,
pin_memory = cfg.eval.dataset.get('pin_memory', False),
collate_fn = collate(),)
return {
'trainloader' : trainloader,
'evalloader' : evalloader,}
def prepare_model(self):
cfg = cfguh().cfg
net = get_model()(cfg.model)
find_unused_parameters=cfg.model.get('find_unused_parameters', False)
if cfg.env.cuda:
net.to(self.local_rank)
net = torch.nn.parallel.DistributedDataParallel(
net, device_ids=[self.local_rank],
find_unused_parameters=find_unused_parameters)
net.train()
scheduler = get_scheduler()(cfg.train.scheduler)
optimizer = get_optimizer()(net, cfg.train.optimizer)
return {
'net' : net,
'optimizer' : optimizer,
'scheduler' : scheduler,}
def save_last_model(self, **para):
cfgt = cfguh().cfg.train
net = para['net']
net_symbol = cfguh().cfg.model.symbol
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
path = osp.join(cfgt.log_dir, '{}_{}_last.pth'.format(
cfgt.experiment_id, net_symbol))
torch.save(netm.state_dict(), path)
print_log('Saving model file {0}'.format(path))
class eval(exec_container):
def prepare_dataloader(self):
cfg = cfguh().cfg
evalloader = None
if cfg.eval.get('dataset', None) is not None:
evalset = get_dataset()(cfg.eval.dataset)
if evalset is None:
return
sampler = get_sampler()(
dataset=evalset, cfg=getattr(cfg.eval.dataset, 'sampler', 'default_eval'))
evalloader = torch.utils.data.DataLoader(
evalset,
batch_size = cfg.eval.batch_size_per_gpu,
sampler = sampler,
num_workers = cfg.eval.dataset_num_workers_per_gpu,
drop_last = False,
pin_memory = False,
collate_fn = collate(), )
return {
'trainloader' : None,
'evalloader' : evalloader,}
def prepare_model(self):
cfg = cfguh().cfg
net = get_model()(cfg.model)
if cfg.env.cuda:
net.to(self.local_rank)
net = torch.nn.parallel.DistributedDataParallel(
net, device_ids=[self.local_rank],
find_unused_parameters=True)
net.eval()
return {'net' : net,}
def save_last_model(self, **para):
return
###############
# some helper #
###############
def torch_to_numpy(*argv):
if len(argv) > 1:
data = list(argv)
else:
data = argv[0]
if isinstance(data, torch.Tensor):
return data.to('cpu').detach().numpy()
elif isinstance(data, (list, tuple)):
out = []
for di in data:
out.append(torch_to_numpy(di))
return out
elif isinstance(data, dict):
out = {}
for ni, di in data.items():
out[ni] = torch_to_numpy(di)
return out
else:
return data
import importlib
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
|