File size: 23,356 Bytes
515f781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
# cudnn.enabled = True
# cudnn.benchmark = True
import torch.distributed as dist
import torch.multiprocessing as mp

import os
import os.path as osp
import sys
import numpy as np
import random
import pprint
import timeit
import time
import copy
import matplotlib.pyplot as plt

from .cfg_holder import cfg_unique_holder as cfguh

from .data_factory import \
    get_dataset, collate, \
    get_loader, \
    get_transform, \
    get_estimator, \
    get_formatter, \
    get_sampler

from .model_zoo import \
    get_model, get_optimizer, get_scheduler

from .log_service import print_log, distributed_log_manager

from .evaluator import get_evaluator
from . import sync

class train_stage(object):
    """
    This is a template for a train stage,
        (can be either train or test or anything)
    Usually, it takes RANK
        one dataloader, one model, one optimizer, one scheduler.
    But it is not limited to these parameters. 
    """
    def __init__(self):
        self.nested_eval_stage = None
        self.rv_keep = None

    def is_better(self, x):
        return (self.rv_keep is None) or (x>self.rv_keep)

    def set_model(self, net, mode):
        if mode == 'train':
            return net.train()
        elif mode == 'eval':
            return net.eval()
        else:
            raise ValueError

    def __call__(self,
                 **paras):
        cfg = cfguh().cfg
        cfgt = cfg.train
        logm = distributed_log_manager()
        epochn, itern_local, itern, samplen = 0, 0, 0, 0

        step_type = cfgt.get('step_type', 'iter')
        assert step_type in ['epoch', 'iter', 'sample'], \
            'Step type must be in [epoch, iter, sample]'
 
        step_num      = cfgt.get('step_num'     , None)
        gradacc_every = cfgt.get('gradacc_every', 1   )
        log_every     = cfgt.get('log_every'    , None)
        ckpt_every    = cfgt.get('ckpt_every'   , None)
        eval_start    = cfgt.get('eval_start'   , 0   )
        eval_every    = cfgt.get('eval_every'   , None)

        if paras.get('resume_step', None) is not None:
            resume_step = paras['resume_step']
            assert step_type == resume_step['type']
            epochn = resume_step['epochn']
            itern = resume_step['itern']
            itern_local = itern * gradacc_every
            samplen = resume_step['samplen']
            del paras['resume_step']

        trainloader = paras['trainloader']
        if trainloader is None:
            import itertools
            trainloader = itertools.cycle([None])
        optimizer   = paras['optimizer']
        scheduler   = paras['scheduler']
        net         = paras['net']

        GRANK, LRANK, NRANK = sync.get_rank('all')
        GWSIZE, LWSIZE, NODES = sync.get_world_size('all')

        weight_path = osp.join(cfgt.log_dir, 'weight')
        if (GRANK==0) and (not osp.isdir(weight_path)):
            os.makedirs(weight_path)
        if (GRANK==0) and (cfgt.save_init_model):
            self.save(net, is_init=True, step=0, optimizer=optimizer)

        epoch_time = timeit.default_timer()
        end_flag = False 
        net.train()

        while True:
            if step_type == 'epoch':
                lr = scheduler[epochn] if scheduler is not None else None
            for batch in trainloader:
                # so first element of batch (usually image) can be [tensor]
                if batch is None:
                    bs = cfgt.batch_size_per_gpu
                elif not isinstance(batch[0], list):
                    bs = batch[0].shape[0]
                else:
                    bs = len(batch[0])
                if cfgt.skip_partial_batch and (bs != cfgt.batch_size_per_gpu):
                    continue

                itern_local_next = itern_local + 1
                samplen_next = samplen + bs*GWSIZE

                if step_type == 'iter':
                    lr = scheduler[itern] if scheduler is not None else None
                    grad_update = itern_local%gradacc_every==(gradacc_every-1)
                elif step_type == 'sample':
                    lr = scheduler[samplen] if scheduler is not None else None
                    # TODO: 
                    # grad_update = samplen%gradacc_every==(gradacc_every-1) 

                itern_next = itern + 1 if grad_update else itern

                # timeDebug = timeit.default_timer()
                paras_new = self.main(
                    batch=batch, 
                    lr=lr,
                    itern_local=itern_local,
                    itern=itern,
                    epochn=epochn,
                    samplen=samplen,
                    isinit=False,
                    grad_update=grad_update,
                    **paras)
                # print_log(timeit.default_timer() - timeDebug)

                paras.update(paras_new)
                logm.accumulate(bs, **paras['log_info'])

                #######
                # log #
                #######

                display_flag = False
                if log_every is not None:
                    display_i = (itern//log_every) != (itern_next//log_every)
                    display_s = (samplen//log_every) != (samplen_next//log_every)
                    display_flag = (display_i and (step_type=='iter')) \
                        or (display_s and (step_type=='sample'))

                if display_flag:
                    tbstep = itern_next if step_type=='iter' else samplen_next
                    console_info = logm.train_summary(
                        itern_next, epochn, samplen_next, lr, tbstep=tbstep)
                    logm.clear()
                    print_log(console_info)

                ########
                # eval #
                ########

                eval_flag = False
                if (self.nested_eval_stage is not None) and (eval_every is not None) and (NRANK == 0):
                    if step_type=='iter':
                        eval_flag = (itern//eval_every) != (itern_next//eval_every)
                        eval_flag = eval_flag and (itern_next>=eval_start)
                        eval_flag = eval_flag or itern_local==0
                    if step_type=='sample':
                        eval_flag = (samplen//eval_every) != (samplen_next//eval_every)
                        eval_flag = eval_flag and (samplen_next>=eval_start)
                        eval_flag = eval_flag or samplen==0

                if eval_flag:
                    eval_cnt = itern_next if step_type=='iter' else samplen_next
                    net = self.set_model(net, 'eval')
                    rv = self.nested_eval_stage(
                        eval_cnt=eval_cnt, **paras)
                    rv = rv.get('eval_rv', None)
                    if rv is not None:
                        logm.tensorboard_log(eval_cnt, rv, mode='eval')
                    if self.is_better(rv):
                        self.rv_keep = rv
                        if GRANK==0:
                            step = {'epochn':epochn, 'itern':itern_next, 
                                    'samplen':samplen_next, 'type':step_type, }
                            self.save(net, is_best=True, step=step, optimizer=optimizer)
                    net = self.set_model(net, 'train')

                ########
                # ckpt # 
                ########

                ckpt_flag = False
                if (GRANK==0) and (ckpt_every is not None):
                    # not distributed
                    ckpt_i = (itern//ckpt_every) != (itern_next//ckpt_every)
                    ckpt_s = (samplen//ckpt_every) != (samplen_next//ckpt_every)
                    ckpt_flag = (ckpt_i and (step_type=='iter')) \
                        or (ckpt_s and (step_type=='sample'))

                if ckpt_flag:
                    if step_type == 'iter':
                        print_log('Checkpoint... {}'.format(itern_next))
                        step = {'epochn':epochn, 'itern':itern_next, 
                                'samplen':samplen_next, 'type':step_type, }
                        self.save(net, itern=itern_next, step=step, optimizer=optimizer)
                    else:
                        print_log('Checkpoint... {}'.format(samplen_next))
                        step = {'epochn':epochn, 'itern':itern_next, 
                                'samplen':samplen_next, 'type':step_type, }
                        self.save(net, samplen=samplen_next, step=step, optimizer=optimizer)

                #######
                # end #
                #######

                itern_local = itern_local_next
                itern = itern_next
                samplen = samplen_next

                if step_type is not None:
                    end_flag = (itern>=step_num and (step_type=='iter')) \
                        or (samplen>=step_num and (step_type=='sample'))
                if end_flag:
                    break
                # loop end

            epochn += 1
            print_log('Epoch {} time:{:.2f}s.'.format(
                epochn, timeit.default_timer()-epoch_time))
            epoch_time = timeit.default_timer()

            if end_flag:
                break
            elif step_type != 'epoch':
                # This is temporarily added to resolve the data issue
                trainloader = self.trick_update_trainloader(trainloader)
                continue

            #######
            # log #
            #######

            display_flag = False
            if (log_every is not None) and (step_type=='epoch'):
                display_flag = (epochn==1) or (epochn%log_every==0)

            if display_flag:
                console_info = logm.train_summary(
                    itern, epochn, samplen, lr, tbstep=epochn)
                logm.clear()
                print_log(console_info)

            ########
            # eval #
            ########

            eval_flag = False
            if (self.nested_eval_stage is not None) and (eval_every is not None) \
                    and (step_type=='epoch') and (NRANK==0):
                eval_flag = (epochn%eval_every==0) and (itern_next>=eval_start)
                eval_flag = (epochn==1) or eval_flag

            if eval_flag:
                net = self.set_model(net, 'eval')
                rv = self.nested_eval_stage(
                    eval_cnt=epochn,
                    **paras)['eval_rv']
                if rv is not None:
                    logm.tensorboard_log(epochn, rv, mode='eval')
                if self.is_better(rv):
                    self.rv_keep = rv
                    if (GRANK==0):
                        step = {'epochn':epochn, 'itern':itern, 
                                'samplen':samplen, 'type':step_type, }
                        self.save(net, is_best=True, step=step, optimizer=optimizer)
                net = self.set_model(net, 'train')

            ########
            # ckpt # 
            ########

            ckpt_flag = False
            if (ckpt_every is not None) and (GRANK==0) and (step_type=='epoch'):
                # not distributed
                ckpt_flag = epochn%ckpt_every==0

            if ckpt_flag:
                print_log('Checkpoint... {}'.format(itern_next))
                step = {'epochn':epochn, 'itern':itern, 
                        'samplen':samplen, 'type':step_type, }
                self.save(net, epochn=epochn, step=step, optimizer=optimizer)

            #######
            # end #
            #######
            if (step_type=='epoch') and (epochn>=step_num):
                break
            # loop end

            # This is temporarily added to resolve the data issue
            trainloader = self.trick_update_trainloader(trainloader)

        logm.tensorboard_close()
        return {}

    def main(self, **paras):
        raise NotImplementedError

    def trick_update_trainloader(self, trainloader):
        return trainloader

    def save_model(self, net, path_noext, **paras):
        cfgt = cfguh().cfg.train
        path = path_noext+'.pth'
        if isinstance(net, (torch.nn.DataParallel,
                            torch.nn.parallel.DistributedDataParallel)):
            netm = net.module
        else:
            netm = net
        torch.save(netm.state_dict(), path)
        print_log('Saving model file {0}'.format(path))

    def save(self, net, itern=None, epochn=None, samplen=None, 
             is_init=False, is_best=False, is_last=False, **paras):
        exid = cfguh().cfg.env.experiment_id
        cfgt = cfguh().cfg.train
        cfgm = cfguh().cfg.model
        if isinstance(net, (torch.nn.DataParallel,
                            torch.nn.parallel.DistributedDataParallel)):
            netm = net.module
        else:
            netm = net
        net_symbol = cfgm.symbol

        check = sum([
            itern is not None, samplen is not None, epochn is not None, 
            is_init, is_best, is_last])
        assert check<2

        if itern is not None:
            path_noexp = '{}_{}_iter_{}'.format(exid, net_symbol, itern)
        elif samplen is not None:
            path_noexp = '{}_{}_samplen_{}'.format(exid, net_symbol, samplen)
        elif epochn is not None:
            path_noexp = '{}_{}_epoch_{}'.format(exid, net_symbol, epochn)
        elif is_init:
            path_noexp = '{}_{}_init'.format(exid, net_symbol)
        elif is_best:
            path_noexp = '{}_{}_best'.format(exid, net_symbol)
        elif is_last:
            path_noexp = '{}_{}_last'.format(exid, net_symbol)
        else:
            path_noexp = '{}_{}_default'.format(exid, net_symbol)

        path_noexp = osp.join(cfgt.log_dir, 'weight', path_noexp)
        self.save_model(net, path_noexp, **paras)

class eval_stage(object):
    def __init__(self):
        self.evaluator = None

    def create_dir(self, path):
        grank = sync.get_rank('global')
        if (not osp.isdir(path)) and (grank == 0):
            os.makedirs(path)
        sync.nodewise_sync().barrier()

    def __call__(self, 
                 evalloader,
                 net,
                 **paras):
        cfgt = cfguh().cfg.eval
        local_rank = sync.get_rank('local')
        if self.evaluator is None:
            evaluator = get_evaluator()(cfgt.evaluator)
            self.evaluator = evaluator
        else:
            evaluator = self.evaluator

        time_check = timeit.default_timer()

        for idx, batch in enumerate(evalloader): 
            rv = self.main(batch, net)
            evaluator.add_batch(**rv)
            if cfgt.output_result:
                try:
                    self.output_f(**rv, cnt=paras['eval_cnt'])
                except:
                    self.output_f(**rv)
            if idx%cfgt.log_display == cfgt.log_display-1:
                print_log('processed.. {}, Time:{:.2f}s'.format(
                    idx+1, timeit.default_timer() - time_check))
                time_check = timeit.default_timer()
            # break

        evaluator.set_sample_n(len(evalloader.dataset))
        eval_rv = evaluator.compute()
        if local_rank == 0:
            evaluator.one_line_summary()
            evaluator.save(cfgt.log_dir)
        evaluator.clear_data()
        return {
            'eval_rv' : eval_rv
        }

class exec_container(object):
    """
    This is the base functor for all types of executions.
        One execution can have multiple stages, 
        but are only allowed to use the same 
        config, network, dataloader. 
    Thus, in most of the cases, one exec_container is one
        training/evaluation/demo...
    If DPP is in use, this functor should be spawn.
    """
    def __init__(self,
                 cfg,
                 **kwargs):
        self.cfg = cfg
        self.registered_stages = []
        self.node_rank = None
        self.local_rank = None
        self.global_rank = None
        self.local_world_size = None
        self.global_world_size = None
        self.nodewise_sync_global_obj = sync.nodewise_sync_global()

    def register_stage(self, stage):
        self.registered_stages.append(stage)

    def __call__(self, 
                 local_rank,
                 **kwargs):
        cfg = self.cfg
        cfguh().save_cfg(cfg)

        self.node_rank = cfg.env.node_rank
        self.local_rank = local_rank
        self.nodes = cfg.env.nodes
        self.local_world_size = cfg.env.gpu_count

        self.global_rank = self.local_rank + self.node_rank * self.local_world_size
        self.global_world_size = self.nodes * self.local_world_size

        print('init {}/{}'.format(self.global_rank, self.global_world_size))
        dist.init_process_group(
            backend = cfg.env.dist_backend,
            init_method = cfg.env.dist_url,
            rank = self.global_rank,
            world_size = self.global_world_size,)
        torch.cuda.set_device(local_rank)
        sync.nodewise_sync().copy_global(self.nodewise_sync_global_obj).local_init()
        
        if isinstance(cfg.env.rnd_seed, int):
            random.seed(cfg.env.rnd_seed + self.global_rank + 200)
            np.random.seed(cfg.env.rnd_seed + self.global_rank + 100)
            torch.manual_seed(cfg.env.rnd_seed + self.global_rank)

        time_start = timeit.default_timer()

        para = {'itern_total' : 0,}
        dl_para = self.prepare_dataloader()
        assert isinstance(dl_para, dict)
        para.update(dl_para)

        md_para = self.prepare_model()
        assert isinstance(md_para, dict)
        para.update(md_para)

        for stage in self.registered_stages:
            stage_para = stage(**para)
            if stage_para is not None:
                para.update(stage_para)

        if self.global_rank==0:
            self.save_last_model(**para)

        print_log(
            'Total {:.2f} seconds'.format(timeit.default_timer() - time_start))
        dist.destroy_process_group()

    def prepare_dataloader(self):
        """
        Prepare the dataloader from config.
        """
        return {
            'trainloader' : None,
            'evalloader' : None}

    def prepare_model(self):
        """
        Prepare the model from config.
        """
        return {'net' : None}

    def save_last_model(self, **para):
        return

    def destroy(self):
        self.nodewise_sync_global_obj.destroy()

class train(exec_container):
    def prepare_dataloader(self):
        cfg = cfguh().cfg
        trainset = get_dataset()(cfg.train.dataset)
        trainloader = None
        if trainset is not None:
            sampler = get_sampler()(
                dataset=trainset, cfg=cfg.train.dataset.get('sampler', 'default_train'))
            trainloader = torch.utils.data.DataLoader(
                trainset, 
                batch_size = cfg.train.batch_size_per_gpu, 
                sampler = sampler, 
                num_workers = cfg.train.dataset_num_workers_per_gpu, 
                drop_last = False, 
                pin_memory = cfg.train.dataset.get('pin_memory', False),
                collate_fn = collate(),)

        evalloader = None
        if 'eval' in cfg:
            evalset = get_dataset()(cfg.eval.dataset)
            if evalset is not None:
                sampler = get_sampler()(
                    dataset=evalset, cfg=cfg.eval.dataset.get('sampler', 'default_eval'))
                evalloader = torch.utils.data.DataLoader(
                    evalset, 
                    batch_size = cfg.eval.batch_size_per_gpu,
                    sampler = sampler,
                    num_workers = cfg.eval.dataset_num_workers_per_gpu,
                    drop_last = False, 
                    pin_memory = cfg.eval.dataset.get('pin_memory', False),
                    collate_fn = collate(),)
            
        return {
            'trainloader' : trainloader,
            'evalloader'  : evalloader,}

    def prepare_model(self):
        cfg = cfguh().cfg
        net = get_model()(cfg.model)
        find_unused_parameters=cfg.model.get('find_unused_parameters', False)
        if cfg.env.cuda:
            net.to(self.local_rank)
            net = torch.nn.parallel.DistributedDataParallel(
                net, device_ids=[self.local_rank], 
                find_unused_parameters=find_unused_parameters)
        net.train() 
        scheduler = get_scheduler()(cfg.train.scheduler)
        optimizer = get_optimizer()(net, cfg.train.optimizer)
        return {
            'net'       : net,
            'optimizer' : optimizer,
            'scheduler' : scheduler,}

    def save_last_model(self, **para):
        cfgt = cfguh().cfg.train
        net = para['net']
        net_symbol = cfguh().cfg.model.symbol
        if isinstance(net, (torch.nn.DataParallel,
                            torch.nn.parallel.DistributedDataParallel)):
            netm = net.module
        else:
            netm = net
        path = osp.join(cfgt.log_dir, '{}_{}_last.pth'.format(
            cfgt.experiment_id, net_symbol))
        torch.save(netm.state_dict(), path)
        print_log('Saving model file {0}'.format(path))

class eval(exec_container):
    def prepare_dataloader(self):
        cfg = cfguh().cfg
        evalloader = None
        if cfg.eval.get('dataset', None) is not None:
            evalset = get_dataset()(cfg.eval.dataset)
            if evalset is None:
                return
            sampler = get_sampler()(
                dataset=evalset, cfg=getattr(cfg.eval.dataset, 'sampler', 'default_eval'))
            evalloader = torch.utils.data.DataLoader(
                evalset, 
                batch_size = cfg.eval.batch_size_per_gpu,
                sampler = sampler,
                num_workers = cfg.eval.dataset_num_workers_per_gpu,
                drop_last = False, 
                pin_memory = False,
                collate_fn = collate(), )
        return {
            'trainloader' : None,
            'evalloader'  : evalloader,}

    def prepare_model(self):
        cfg = cfguh().cfg
        net = get_model()(cfg.model)
        if cfg.env.cuda:
            net.to(self.local_rank)
            net = torch.nn.parallel.DistributedDataParallel(
                net, device_ids=[self.local_rank], 
                find_unused_parameters=True)
        net.eval()
        return {'net' : net,}

    def save_last_model(self, **para):
        return

###############
# some helper #
###############

def torch_to_numpy(*argv):
    if len(argv) > 1:
        data = list(argv)
    else:
        data = argv[0]

    if isinstance(data, torch.Tensor):
        return data.to('cpu').detach().numpy()
    elif isinstance(data, (list, tuple)):
        out = []
        for di in data:
            out.append(torch_to_numpy(di))
        return out
    elif isinstance(data, dict):
        out = {}
        for ni, di in data.items():
            out[ni] = torch_to_numpy(di)
        return out
    else:
        return data

import importlib

def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)