Spaces:
Runtime error
Runtime error
File size: 8,035 Bytes
515f781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
from multiprocessing import shared_memory
# import multiprocessing
# if hasattr(multiprocessing, "shared_memory"):
# from multiprocessing import shared_memory
# else:
# # workaround for single gpu inference on colab
# shared_memory = None
import random
import pickle
import time
import copy
import torch
import torch.distributed as dist
from lib.cfg_holder import cfg_unique_holder as cfguh
def singleton(class_):
instances = {}
def getinstance(*args, **kwargs):
if class_ not in instances:
instances[class_] = class_(*args, **kwargs)
return instances[class_]
return getinstance
def is_ddp():
return dist.is_available() and dist.is_initialized()
def get_rank(type='local'):
ddp = is_ddp()
global_rank = dist.get_rank() if ddp else 0
local_world_size = torch.cuda.device_count()
if type == 'global':
return global_rank
elif type == 'local':
return global_rank % local_world_size
elif type == 'node':
return global_rank // local_world_size
elif type == 'all':
return global_rank, \
global_rank % local_world_size, \
global_rank // local_world_size
else:
assert False, 'Unknown type'
def get_world_size(type='local'):
ddp = is_ddp()
global_rank = dist.get_rank() if ddp else 0
global_world_size = dist.get_world_size() if ddp else 1
local_world_size = torch.cuda.device_count()
if type == 'global':
return global_world_size
elif type == 'local':
return local_world_size
elif type == 'node':
return global_world_size // local_world_size
elif type == 'all':
return global_world_size, local_world_size, \
global_world_size // local_world_size
else:
assert False, 'Unknown type'
class barrier_lock(object):
def __init__(self, n):
self.n = n
id = int(random.random()*10000) + int(time.time())*10000
self.lock_shmname = 'barrier_lock_{}'.format(id)
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname, create=True, size=n)
for i in range(n):
lock_shm.buf[i] = 0
lock_shm.close()
def destroy(self):
try:
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname)
lock_shm.close()
lock_shm.unlink()
except:
return
def wait(self, k):
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname)
assert lock_shm.buf[k] == 0, 'Two waits on the same id is not allowed.'
lock_shm.buf[k] = 1
if k == 0:
while sum([lock_shm.buf[i]==0 for i in range(self.n)]) != 0:
pass
for i in range(self.n):
lock_shm.buf[i] = 0
return
else:
while lock_shm.buf[k] != 0:
pass
class default_lock(object):
def __init__(self):
id = int(random.random()*10000) + int(time.time())*10000
self.lock_shmname = 'lock_{}'.format(id)
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname, create=True, size=2)
for i in range(2):
lock_shm.buf[i] = 0
lock_shm.close()
def destroy(self):
try:
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname)
lock_shm.close()
lock_shm.unlink()
except:
return
def lock(self, k):
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname)
while lock_shm.buf[0] == 1:
pass
lock_shm.buf[0] = 1
lock_shm.buf[1] = k
def unlock(self, k):
lock_shm = shared_memory.SharedMemory(
name=self.lock_shmname)
if lock_shm.buf[1] != k:
return
lock_shm.buf[0] = 0
return
class nodewise_sync_global(object):
"""
This is the global part of nodewise_sync that need to call at master process
before spawn.
"""
def __init__(self):
self.local_world_size = get_world_size('local')
self.reg_lock = default_lock()
self.b_lock = barrier_lock(self.local_world_size)
id = int(random.random()*10000) + int(time.time())*10000
self.id_shmname = 'nodewise_sync_id_shm_{}'.format(id)
def destroy(self):
self.reg_lock.destroy()
self.b_lock.destroy()
try:
shm = shared_memory.SharedMemory(name=self.id_shmname)
shm.close()
shm.unlink()
except:
return
@singleton
class nodewise_sync(object):
"""
A class that centralize nodewise sync activities.
The backend is multiprocess sharememory, not torch, as torch not support this.
"""
def __init__(self):
pass
def copy_global(self, reference):
self.local_world_size = reference.local_world_size
self.b_lock = reference.b_lock
self.reg_lock = reference.reg_lock
self.id_shmname = reference.id_shmname
return self
def local_init(self):
self.ddp = is_ddp()
self.global_rank, self.local_rank, self.node_rank = get_rank('all')
self.global_world_size, self.local_world_size, self.nodes = get_world_size('all')
if self.local_rank == 0:
temp = int(random.random()*10000) + int(time.time())*10000
temp = pickle.dumps(temp)
shm = shared_memory.SharedMemory(
name=self.id_shmname, create=True, size=len(temp))
shm.close()
return self
def random_sync_id(self):
assert self.local_rank is not None, 'Not initialized!'
if self.local_rank == 0:
sync_id = int(random.random()*10000) + int(time.time())*10000
data = pickle.dumps(sync_id)
shm = shared_memory.SharedMemory(name=self.id_shmname)
shm.buf[0:len(data)] = data[0:len(data)]
self.barrier()
shm.close()
else:
self.barrier()
shm = shared_memory.SharedMemory(name=self.id_shmname)
sync_id = pickle.loads(shm.buf)
shm.close()
return sync_id
def barrier(self):
self.b_lock.wait(self.local_rank)
def lock(self):
self.reg_lock.lock(self.local_rank)
def unlock(self):
self.reg_lock.unlock(self.local_rank)
def broadcast_r0(self, data=None):
assert self.local_rank is not None, 'Not initialized!'
id = self.random_sync_id()
shmname = 'broadcast_r0_{}'.format(id)
if self.local_rank == 0:
assert data!=None, 'Rank 0 needs to input data!'
data = pickle.dumps(data)
datan = len(data)
load_info_shm = shared_memory.SharedMemory(
name=shmname, create=True, size=datan)
load_info_shm.buf[0:datan] = data[0:datan]
self.barrier()
self.barrier()
load_info_shm.close()
load_info_shm.unlink()
return None
else:
assert data==None, 'Rank other than 1 should input None as data!'
self.barrier()
shm = shared_memory.SharedMemory(name=shmname)
data = pickle.loads(shm.buf)
shm.close()
self.barrier()
return data
def destroy(self):
self.barrier.destroy()
try:
shm = shared_memory.SharedMemory(name=self.id_shmname)
shm.close()
shm.unlink()
except:
return
# import contextlib
# @contextlib.contextmanager
# def weight_sync(module, sync):
# assert isinstance(module, torch.nn.Module)
# if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
# yield
# else:
# with module.no_sync():
# yield
# def weight_sync(net):
# for parameters in net.parameters():
# dist.all_reduce(parameters, dist.ReduceOp.AVG) |