Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,586 Bytes
496bf8a efcdb1c ab3a30c 496bf8a ab3a30c efcdb1c ab3a30c c8a6713 ab3a30c efcdb1c c8a6713 4a248db c8a6713 290deb7 ab3a30c 290deb7 80ca0fc ab3a30c 80ca0fc ab3a30c 80ca0fc ab3a30c 80ca0fc ab3a30c c8a6713 1700872 80ca0fc c8a6713 80ca0fc c8a6713 80ca0fc c8a6713 1700872 80ca0fc c8a6713 290deb7 ab3a30c efcdb1c ab3a30c 290deb7 efcdb1c ab3a30c efcdb1c ab3a30c efcdb1c ab3a30c efcdb1c ab3a30c 6f5cea7 ab3a30c 6f5cea7 ab3a30c 290deb7 ab3a30c 496bf8a ab3a30c c8a6713 496bf8a c8a6713 ab3a30c efcdb1c ab3a30c 5039fa6 ab3a30c c8a6713 ab3a30c 1700872 07f1864 ab3a30c 33d12bd ab3a30c c8a6713 496bf8a c8a6713 496bf8a c8a6713 8104036 c8a6713 8104036 496bf8a c8a6713 496bf8a c8a6713 8104036 c8a6713 ab3a30c 33d12bd ab3a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import io
import math
from queue import Queue
from threading import Thread
from typing import Optional
import numpy as np
import spaces
import gradio as gr
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from transformers.generation.streamers import BaseStreamer
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32
repo_id = "parler-tts/parler_tts_mini_v0.1"
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H"
model = ParlerTTSForConditionalGeneration.from_pretrained(
repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)
jenny_model = ParlerTTSForConditionalGeneration.from_pretrained(
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "Please surprise me and speak in whatever voice you enjoy."
examples = [
[
"Remember - this is only the first iteration of the model! To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data by a factor of five times.",
"A male speaker with a low-pitched voice delivering his words at a fast pace in a small, confined space with a very clear audio and an animated tone.",
3.0,
],
[
"'This is the best time of my life, Bartley,' she said happily.",
"A female speaker with a slightly low-pitched, quite monotone voice delivers her words at a slightly faster-than-average pace in a confined space with very clear audio.",
3.0,
],
[
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
"A male speaker with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
3.0,
],
[
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
"A male speaker with a low-pitched voice delivers his words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
3.0,
],
]
jenny_examples = [
[
"Remember, this is only the first iteration of the model! To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data by a factor of five times.",
"Jenny speaks at an average pace with a slightly animated delivery in a very confined sounding environment with clear audio quality.",
3.0,
],
[
"'This is the best time of my life, Bartley,' she said happily.",
"Jenny speaks in quite a monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
3.0,
],
[
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
"Jenny delivers her words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
3.0,
],
[
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
"Jenny delivers her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
3.0,
],
]
class ParlerTTSStreamer(BaseStreamer):
def __init__(
self,
model: ParlerTTSForConditionalGeneration,
device: Optional[str] = None,
play_steps: Optional[int] = 10,
stride: Optional[int] = None,
timeout: Optional[float] = None,
):
"""
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
Gradio demo).
Parameters:
model (`ParlerTTSForConditionalGeneration`):
The Parler-TTS model used to generate the audio waveform.
device (`str`, *optional*):
The torch device on which to run the computation. If `None`, will default to the device of the model.
play_steps (`int`, *optional*, defaults to 10):
The number of generation steps with which to return the generated audio array. Using fewer steps will
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
should be tuned to your device and latency requirements.
stride (`int`, *optional*):
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
play_steps // 6 in the audio space.
timeout (`int`, *optional*):
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
in `.generate()`, when it is called in a separate thread.
"""
self.decoder = model.decoder
self.audio_encoder = model.audio_encoder
self.generation_config = model.generation_config
self.device = device if device is not None else model.device
# variables used in the streaming process
self.play_steps = play_steps
if stride is not None:
self.stride = stride
else:
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
self.token_cache = None
self.to_yield = 0
# varibles used in the thread process
self.audio_queue = Queue()
self.stop_signal = None
self.timeout = timeout
def apply_delay_pattern_mask(self, input_ids):
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids[:, :1],
bos_token_id=self.generation_config.bos_token_id,
pad_token_id=self.generation_config.decoder_start_token_id,
max_length=input_ids.shape[-1],
)
# apply the pattern mask to the input ids
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
# revert the pattern delay mask by filtering the pad token id
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
# append the frame dimension back to the audio codes
input_ids = input_ids[None, ...]
# send the input_ids to the correct device
input_ids = input_ids.to(self.audio_encoder.device)
decode_sequentially = (
self.generation_config.bos_token_id in input_ids
or self.generation_config.pad_token_id in input_ids
or self.generation_config.eos_token_id in input_ids
)
if not decode_sequentially:
output_values = self.audio_encoder.decode(
input_ids,
audio_scales=[None],
)
else:
sample = input_ids[:, 0]
sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
sample = sample[:, :, sample_mask]
output_values = self.audio_encoder.decode(sample[None, ...], [None])
audio_values = output_values.audio_values[0, 0]
return audio_values.cpu().float().numpy()
def put(self, value):
batch_size = value.shape[0] // self.decoder.num_codebooks
if batch_size > 1:
raise ValueError("ParlerTTSStreamer only supports batch size 1")
if self.token_cache is None:
self.token_cache = value
else:
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
if self.token_cache.shape[-1] % self.play_steps == 0:
audio_values = self.apply_delay_pattern_mask(self.token_cache)
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
self.to_yield += len(audio_values) - self.to_yield - self.stride
def end(self):
"""Flushes any remaining cache and appends the stop symbol."""
if self.token_cache is not None:
audio_values = self.apply_delay_pattern_mask(self.token_cache)
else:
audio_values = np.zeros(self.to_yield)
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
self.audio_queue.put(audio, timeout=self.timeout)
if stream_end:
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
def __iter__(self):
return self
def __next__(self):
value = self.audio_queue.get(timeout=self.timeout)
if not isinstance(value, np.ndarray) and value == self.stop_signal:
raise StopIteration()
else:
return value
def numpy_to_mp3(audio_array, sampling_rate):
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
@spaces.GPU
def generate_base(text, description, play_steps_in_s=2.0):
play_steps = int(frame_rate * play_steps_in_s)
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
inputs = tokenizer(description, return_tensors="pt").to(device)
prompt = tokenizer(text, return_tensors="pt").to(device)
generation_kwargs = dict(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
streamer=streamer,
do_sample=True,
temperature=1.0,
min_new_tokens=10,
)
set_seed(SEED)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for new_audio in streamer:
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
@spaces.GPU
def generate_jenny(text, description, play_steps_in_s=2.0):
play_steps = int(frame_rate * play_steps_in_s)
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
inputs = tokenizer(description, return_tensors="pt").to(device)
prompt = tokenizer(text, return_tensors="pt").to(device)
generation_kwargs = dict(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
streamer=streamer,
do_sample=True,
temperature=1.0,
min_new_tokens=10,
)
set_seed(SEED)
thread = Thread(target=jenny_model.generate, kwargs=generation_kwargs)
thread.start()
for new_audio in streamer:
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
yield sampling_rate, new_audio
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models. Two models are demonstrated here, <a href="https://huggingface.co/parler-tts/parler_tts_mini_v0.1"> Parler-TTS Mini v0.1</a>,
is the first iteration model trained using 10k hours of narrated audiobooks, and <a href="https://huggingface.co/ylacombe/parler-tts-mini-jenny-30H"> Parler-TTS Jenny</a>,
a model fine-tuned on the <a href="https://huggingface.co/datasets/reach-vb/jenny_tts_dataset"> Jenny dataset</a>.
Both models generates high-quality speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).</p>
<p>Tips for ensuring good generation:
<ul>
<li>Include the term <b>"very clear audio"</b> to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>When using the fine-tuned model, include the term <b>"Jenny"</b> to pick out her voice</li>
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>
"""
)
with gr.Tab("Base"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True)
inputs = [input_text, description, play_seconds]
outputs = [audio_out]
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
with gr.Tab("Jenny"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=jenny_examples[0][0], elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=jenny_examples[0][1], elem_id="input_description")
play_seconds = gr.Slider(3.0, 7.0, value=jenny_examples[0][2], step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True)
inputs = [input_text, description, play_seconds]
outputs = [audio_out]
gr.Examples(examples=jenny_examples, fn=generate_jenny, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=generate_jenny, inputs=inputs, outputs=outputs, queue=True)
gr.HTML(
"""
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
The v1 release of the model will be trained on this data, as well as inference optimisations, such as flash attention
and torch compile, that will improve the latency by 2-4x. If you want to find out more about how this model was trained and even fine-tune it yourself, check-out the
<a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and its
associated checkpoints are licensed under <a href='https://github.com/huggingface/parler-tts?tab=Apache-2.0-1-ov-file#readme'> Apache 2.0</a>.</p>
"""
)
block.queue()
block.launch(share=True)
|