Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
efcdb1c
1
Parent(s):
ab3a30c
for parler
Browse files- app.py +16 -13
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from queue import Queue
|
2 |
from threading import Thread
|
3 |
from typing import Optional
|
@@ -11,12 +12,14 @@ from parler_tts import ParlerTTSForConditionalGeneration
|
|
11 |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
12 |
from transformers.generation.streamers import BaseStreamer
|
13 |
|
14 |
-
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else
|
15 |
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
16 |
|
17 |
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
18 |
|
19 |
-
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
|
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
21 |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
22 |
|
@@ -83,7 +86,7 @@ class ParlerTTSStreamer(BaseStreamer):
|
|
83 |
if stride is not None:
|
84 |
self.stride = stride
|
85 |
else:
|
86 |
-
hop_length =
|
87 |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
88 |
self.token_cache = None
|
89 |
self.to_yield = 0
|
@@ -95,19 +98,18 @@ class ParlerTTSStreamer(BaseStreamer):
|
|
95 |
|
96 |
def apply_delay_pattern_mask(self, input_ids):
|
97 |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
|
98 |
-
_,
|
99 |
input_ids[:, :1],
|
|
|
100 |
pad_token_id=self.generation_config.decoder_start_token_id,
|
101 |
max_length=input_ids.shape[-1],
|
102 |
)
|
103 |
# apply the pattern mask to the input ids
|
104 |
-
input_ids = self.decoder.apply_delay_pattern_mask(input_ids,
|
105 |
|
106 |
# revert the pattern delay mask by filtering the pad token id
|
107 |
-
|
108 |
-
|
109 |
-
)
|
110 |
-
|
111 |
# append the frame dimension back to the audio codes
|
112 |
input_ids = input_ids[None, ...]
|
113 |
|
@@ -169,7 +171,7 @@ target_dtype = np.int16
|
|
169 |
max_range = np.iinfo(target_dtype).max
|
170 |
|
171 |
@spaces.GPU
|
172 |
-
def
|
173 |
play_steps = int(frame_rate * play_steps_in_s)
|
174 |
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
175 |
|
@@ -182,6 +184,7 @@ def gen_tts(text, description, play_steps_in_s=2.0):
|
|
182 |
streamer=streamer,
|
183 |
do_sample=True,
|
184 |
temperature=1.0,
|
|
|
185 |
)
|
186 |
|
187 |
set_seed(SEED)
|
@@ -267,12 +270,12 @@ with gr.Blocks(css=css) as block:
|
|
267 |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
268 |
run_button = gr.Button("Generate Audio", variant="primary")
|
269 |
with gr.Column():
|
270 |
-
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
|
271 |
|
272 |
inputs = [input_text, description]
|
273 |
outputs = [audio_out]
|
274 |
-
gr.Examples(examples=examples, fn=
|
275 |
-
run_button.click(fn=
|
276 |
gr.HTML(
|
277 |
"""
|
278 |
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
|
|
|
1 |
+
import math
|
2 |
from queue import Queue
|
3 |
from threading import Thread
|
4 |
from typing import Optional
|
|
|
12 |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
13 |
from transformers.generation.streamers import BaseStreamer
|
14 |
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
16 |
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
17 |
|
18 |
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
19 |
|
20 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
21 |
+
repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
22 |
+
).to(device)
|
23 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
24 |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
25 |
|
|
|
86 |
if stride is not None:
|
87 |
self.stride = stride
|
88 |
else:
|
89 |
+
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
|
90 |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
91 |
self.token_cache = None
|
92 |
self.to_yield = 0
|
|
|
98 |
|
99 |
def apply_delay_pattern_mask(self, input_ids):
|
100 |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
|
101 |
+
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
102 |
input_ids[:, :1],
|
103 |
+
bos_token_id=self.generation_config.bos_token_id,
|
104 |
pad_token_id=self.generation_config.decoder_start_token_id,
|
105 |
max_length=input_ids.shape[-1],
|
106 |
)
|
107 |
# apply the pattern mask to the input ids
|
108 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
|
109 |
|
110 |
# revert the pattern delay mask by filtering the pad token id
|
111 |
+
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
|
112 |
+
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
|
|
|
|
|
113 |
# append the frame dimension back to the audio codes
|
114 |
input_ids = input_ids[None, ...]
|
115 |
|
|
|
171 |
max_range = np.iinfo(target_dtype).max
|
172 |
|
173 |
@spaces.GPU
|
174 |
+
def generate_tts(text, description, play_steps_in_s=2.0):
|
175 |
play_steps = int(frame_rate * play_steps_in_s)
|
176 |
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
177 |
|
|
|
184 |
streamer=streamer,
|
185 |
do_sample=True,
|
186 |
temperature=1.0,
|
187 |
+
min_new_tokens=10,
|
188 |
)
|
189 |
|
190 |
set_seed(SEED)
|
|
|
270 |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
271 |
run_button = gr.Button("Generate Audio", variant="primary")
|
272 |
with gr.Column():
|
273 |
+
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out", streaming=True, autoplay=True)
|
274 |
|
275 |
inputs = [input_text, description]
|
276 |
outputs = [audio_out]
|
277 |
+
gr.Examples(examples=examples, fn=generate_tts, inputs=inputs, outputs=outputs, cache_examples=False)
|
278 |
+
run_button.click(fn=generate_tts, inputs=inputs, outputs=outputs, queue=True)
|
279 |
gr.HTML(
|
280 |
"""
|
281 |
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/parler-tts.git
|
|
|
|
1 |
+
git+https://github.com/huggingface/parler-tts.git
|
2 |
+
accelerate
|