isayahc commited on
Commit
ad2ef92
1 Parent(s): 26d9065

moved envars to config

Browse files
config.py CHANGED
@@ -5,6 +5,8 @@ from rag_app.database.db_handler import DataBaseHandler
5
  load_dotenv()
6
 
7
  SQLITE_FILE_NAME = os.getenv('SOURCES_CACHE')
 
 
8
 
9
 
10
  db = DataBaseHandler()
 
5
  load_dotenv()
6
 
7
  SQLITE_FILE_NAME = os.getenv('SOURCES_CACHE')
8
+ PERSIST_DIRECTORY = os.getenv('VECTOR_DATABASE_LOCATION')
9
+ EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
10
 
11
 
12
  db = DataBaseHandler()
rag_app/structured_tools/structured_tools.py CHANGED
@@ -9,27 +9,23 @@ from rag_app.utils.utils import (
9
  )
10
  import chromadb
11
  import os
12
- from config import db
13
 
14
 
15
-
16
- persist_directory = os.getenv('VECTOR_DATABASE_LOCATION')
17
- embedding_model = os.getenv("EMBEDDING_MODEL")
18
-
19
  @tool
20
  def memory_search(query:str) -> str:
21
  """Search the memory vector store for existing knowledge and relevent pervious researches. \
22
  This is your primary source to start your search with checking what you already have learned from the past, before going online."""
23
  # Since we have more than one collections we should change the name of this tool
24
  client = chromadb.PersistentClient(
25
- path=persist_directory,
26
  )
27
 
28
  collection_name = os.getenv('CONVERSATION_COLLECTION_NAME')
29
  #store using envar
30
 
31
  embedding_function = SentenceTransformerEmbeddings(
32
- model_name=embedding_model,
33
  )
34
 
35
  vector_db = Chroma(
@@ -44,6 +40,7 @@ def memory_search(query:str) -> str:
44
 
45
  return docs.__str__()
46
 
 
47
  @tool
48
  def knowledgeBase_search(query:str) -> str:
49
  """Suche die interne Datenbank nach passenden Versicherungsprodukten und Informationen zu den Versicherungen"""
@@ -56,7 +53,7 @@ def knowledgeBase_search(query:str) -> str:
56
  #store using envar
57
 
58
  embedding_function = SentenceTransformerEmbeddings(
59
- model_name=embedding_model
60
  )
61
 
62
  # vector_db = Chroma(
@@ -64,7 +61,7 @@ def knowledgeBase_search(query:str) -> str:
64
  # #collection_name=collection_name,
65
  # embedding_function=embedding_function,
66
  # )
67
- vector_db = Chroma(persist_directory=persist_directory, embedding_function=embedding_function)
68
  retriever = vector_db.as_retriever(search_type="mmr", search_kwargs={'k':5, 'fetch_k':10})
69
  # This is deprecated, changed to invoke
70
  # LangChainDeprecationWarning: The method `BaseRetriever.get_relevant_documents` was deprecated in langchain-core 0.1.46 and will be removed in 0.3.0. Use invoke instead.
@@ -74,6 +71,7 @@ def knowledgeBase_search(query:str) -> str:
74
 
75
  return docs.__str__()
76
 
 
77
  @tool
78
  def google_search(query: str) -> str:
79
  """Verbessere die Ergebnisse durch eine Suche über die Webseite der Versicherung. Erstelle eine neue Suchanfrage, um die Erfolgschancen zu verbesseren."""
 
9
  )
10
  import chromadb
11
  import os
12
+ from config import db, PERSIST_DIRECTORY, EMBEDDING_MODEL
13
 
14
 
 
 
 
 
15
  @tool
16
  def memory_search(query:str) -> str:
17
  """Search the memory vector store for existing knowledge and relevent pervious researches. \
18
  This is your primary source to start your search with checking what you already have learned from the past, before going online."""
19
  # Since we have more than one collections we should change the name of this tool
20
  client = chromadb.PersistentClient(
21
+ path=PERSIST_DIRECTORY,
22
  )
23
 
24
  collection_name = os.getenv('CONVERSATION_COLLECTION_NAME')
25
  #store using envar
26
 
27
  embedding_function = SentenceTransformerEmbeddings(
28
+ model_name=EMBEDDING_MODEL,
29
  )
30
 
31
  vector_db = Chroma(
 
40
 
41
  return docs.__str__()
42
 
43
+
44
  @tool
45
  def knowledgeBase_search(query:str) -> str:
46
  """Suche die interne Datenbank nach passenden Versicherungsprodukten und Informationen zu den Versicherungen"""
 
53
  #store using envar
54
 
55
  embedding_function = SentenceTransformerEmbeddings(
56
+ model_name=EMBEDDING_MODEL
57
  )
58
 
59
  # vector_db = Chroma(
 
61
  # #collection_name=collection_name,
62
  # embedding_function=embedding_function,
63
  # )
64
+ vector_db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embedding_function)
65
  retriever = vector_db.as_retriever(search_type="mmr", search_kwargs={'k':5, 'fetch_k':10})
66
  # This is deprecated, changed to invoke
67
  # LangChainDeprecationWarning: The method `BaseRetriever.get_relevant_documents` was deprecated in langchain-core 0.1.46 and will be removed in 0.3.0. Use invoke instead.
 
71
 
72
  return docs.__str__()
73
 
74
+
75
  @tool
76
  def google_search(query: str) -> str:
77
  """Verbessere die Ergebnisse durch eine Suche über die Webseite der Versicherung. Erstelle eine neue Suchanfrage, um die Erfolgschancen zu verbesseren."""