Spaces:
Sleeping
Sleeping
added db to app_gui
Browse files- app_gui.py +37 -98
app_gui.py
CHANGED
@@ -1,19 +1,12 @@
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
-
from fastapi import FastAPI
|
4 |
-
from fastapi import FastAPI
|
5 |
-
from rag_app.agents.react_agent import agent_executor, llm
|
6 |
-
from rag_app.chains import user_response_sentiment_prompt
|
7 |
-
from typing import Dict
|
8 |
-
import re
|
9 |
-
from rag_app.utils.utils import extract_responses
|
10 |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
11 |
from rag_app.agents.react_agent import agent_executor
|
12 |
-
|
13 |
|
14 |
-
app = FastAPI()
|
15 |
get_chroma_vs()
|
16 |
|
|
|
17 |
if __name__ == "__main__":
|
18 |
|
19 |
# Function to add a new input to the chat history
|
@@ -21,29 +14,12 @@ if __name__ == "__main__":
|
|
21 |
# Append the new text to the history with a placeholder for the response
|
22 |
history = history + [(text, None)]
|
23 |
return history, ""
|
24 |
-
# Function to add a new input to the chat history
|
25 |
-
def add_text(history, text):
|
26 |
-
# Append the new text to the history with a placeholder for the response
|
27 |
-
history = history + [(text, None)]
|
28 |
-
return history, ""
|
29 |
-
|
30 |
-
# Function representing the bot's response mechanism
|
31 |
-
def bot(history):
|
32 |
-
# Obtain the response from the 'infer' function using the latest input
|
33 |
-
response = infer(history[-1][0], history)
|
34 |
-
#sources = [doc.metadata.get("source") for doc in response['source_documents']]
|
35 |
-
#src_list = '\n'.join(sources)
|
36 |
-
#print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
|
37 |
|
38 |
-
|
39 |
-
#history[-1][1] = print_this #response['answer']
|
40 |
-
# Update the history with the bot's response
|
41 |
-
history[-1][1] = response['output']
|
42 |
-
return history
|
43 |
# Function representing the bot's response mechanism
|
44 |
def bot(history):
|
45 |
# Obtain the response from the 'infer' function using the latest input
|
46 |
response = infer(history[-1][0], history)
|
|
|
47 |
history[-1][1] = response['output']
|
48 |
return history
|
49 |
|
@@ -60,37 +36,7 @@ if __name__ == "__main__":
|
|
60 |
)
|
61 |
return result
|
62 |
except Exception:
|
63 |
-
raise gr.
|
64 |
-
|
65 |
-
def vote(data: gr.LikeData):
|
66 |
-
if data.liked:
|
67 |
-
print("You upvoted this response: " + data.value)
|
68 |
-
else:
|
69 |
-
print("You downvoted this response: " + data.value)
|
70 |
-
# Function to infer the response using the RAG model
|
71 |
-
def infer(question, history):
|
72 |
-
# Use the question and history to query the RAG model
|
73 |
-
#result = qa({"query": question, "history": history, "question": question})
|
74 |
-
# try:
|
75 |
-
# data = user_sentiment_chain.invoke({"user_reponse":question})
|
76 |
-
# responses = extract_responses(data)
|
77 |
-
# if responses['AI'] == "1":
|
78 |
-
# pass
|
79 |
-
# # Do important stuff here plox
|
80 |
-
# # store into database
|
81 |
-
# except Exception as e:
|
82 |
-
# raise e
|
83 |
-
try:
|
84 |
-
result = agent_executor.invoke(
|
85 |
-
{
|
86 |
-
"input": question,
|
87 |
-
"chat_history": history
|
88 |
-
}
|
89 |
-
)
|
90 |
-
return result
|
91 |
-
except Exception as e:
|
92 |
-
# raise gr.Error("Model is Overloaded, Please retry later!")
|
93 |
-
raise e
|
94 |
|
95 |
def vote(data: gr.LikeData):
|
96 |
if data.liked:
|
@@ -98,13 +44,14 @@ if __name__ == "__main__":
|
|
98 |
else:
|
99 |
print("You downvoted this response: ")
|
100 |
|
|
|
|
|
|
|
|
|
|
|
101 |
# CSS styling for the Gradio interface
|
102 |
css = """
|
103 |
-
#col-container {max-width:
|
104 |
-
"""
|
105 |
-
# CSS styling for the Gradio interface
|
106 |
-
css = """
|
107 |
-
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
108 |
"""
|
109 |
|
110 |
# HTML content for the Gradio interface title
|
@@ -113,59 +60,51 @@ if __name__ == "__main__":
|
|
113 |
<p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
|
114 |
</div>
|
115 |
"""
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
"""
|
122 |
|
123 |
# Building the Gradio interface
|
124 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
125 |
with gr.Column(elem_id="col-container"):
|
126 |
-
gr.HTML(
|
127 |
chatbot = gr.Chatbot([], elem_id="chatbot",
|
128 |
-
label="
|
129 |
bubble_full_width=False,
|
130 |
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
|
131 |
height=680,) # Initialize the chatbot component
|
132 |
chatbot.like(vote, None, None)
|
133 |
-
clear = gr.Button("Clear") # Add a button to clear the chat
|
134 |
-
# Building the Gradio interface
|
135 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
136 |
-
with gr.Column(elem_id="col-container"):
|
137 |
-
gr.HTML(title) # Add the HTML title to the interface
|
138 |
-
chatbot = gr.Chatbot([], elem_id="chatbot",
|
139 |
-
label="BotTina 2.0",
|
140 |
-
bubble_full_width=False,
|
141 |
-
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
|
142 |
-
height=680,) # Initialize the chatbot component
|
143 |
-
chatbot.like(vote, None, None)
|
144 |
-
clear = gr.Button("Clear") # Add a button to clear the chat
|
145 |
|
146 |
# Create a row for the question input
|
147 |
with gr.Row():
|
148 |
-
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
with gr.Row():
|
151 |
-
|
152 |
|
153 |
# Define the action when the question is submitted
|
154 |
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
|
155 |
-
bot, chatbot, chatbot
|
156 |
-
)
|
|
|
157 |
# Define the action for the clear button
|
158 |
clear.click(lambda: None, None, chatbot, queue=False)
|
159 |
-
# Define the action when the question is submitted
|
160 |
-
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
|
161 |
-
bot, chatbot, chatbot
|
162 |
-
)
|
163 |
-
# Define the action for the clear button
|
164 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
165 |
-
|
166 |
-
# Launch the Gradio demo interface
|
167 |
-
demo.queue().launch(share=False, debug=True)
|
168 |
|
169 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
170 |
# Launch the Gradio demo interface
|
171 |
demo.queue().launch(share=False, debug=True)
|
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
4 |
from rag_app.agents.react_agent import agent_executor
|
5 |
+
from config import db
|
6 |
|
|
|
7 |
get_chroma_vs()
|
8 |
|
9 |
+
|
10 |
if __name__ == "__main__":
|
11 |
|
12 |
# Function to add a new input to the chat history
|
|
|
14 |
# Append the new text to the history with a placeholder for the response
|
15 |
history = history + [(text, None)]
|
16 |
return history, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
# Function representing the bot's response mechanism
|
19 |
def bot(history):
|
20 |
# Obtain the response from the 'infer' function using the latest input
|
21 |
response = infer(history[-1][0], history)
|
22 |
+
print(response)
|
23 |
history[-1][1] = response['output']
|
24 |
return history
|
25 |
|
|
|
36 |
)
|
37 |
return result
|
38 |
except Exception:
|
39 |
+
raise gr.Warning("Model is Overloaded, please try again in a few minutes!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def vote(data: gr.LikeData):
|
42 |
if data.liked:
|
|
|
44 |
else:
|
45 |
print("You downvoted this response: ")
|
46 |
|
47 |
+
def get_examples(input_text: str):
|
48 |
+
tmp_history = [(input_text, None)]
|
49 |
+
response = infer(input_text, tmp_history)
|
50 |
+
return response['output']
|
51 |
+
|
52 |
# CSS styling for the Gradio interface
|
53 |
css = """
|
54 |
+
#col-container {max-width: 1200px; margin-left: auto; margin-right: auto;}
|
|
|
|
|
|
|
|
|
55 |
"""
|
56 |
|
57 |
# HTML content for the Gradio interface title
|
|
|
60 |
<p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
|
61 |
</div>
|
62 |
"""
|
63 |
+
head_style = """
|
64 |
+
<style>
|
65 |
+
@media (min-width: 1536px)
|
66 |
+
{
|
67 |
+
.gradio-container {
|
68 |
+
min-width: var(--size-full) !important;
|
69 |
+
}
|
70 |
+
}
|
71 |
+
</style>
|
72 |
"""
|
73 |
|
74 |
# Building the Gradio interface
|
75 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="InsurePal AI 🤵🏻♂️", head=head_style) as demo:
|
76 |
with gr.Column(elem_id="col-container"):
|
77 |
+
gr.HTML() # Add the HTML title to the interface
|
78 |
chatbot = gr.Chatbot([], elem_id="chatbot",
|
79 |
+
label="InsurePal AI",
|
80 |
bubble_full_width=False,
|
81 |
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
|
82 |
height=680,) # Initialize the chatbot component
|
83 |
chatbot.like(vote, None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Create a row for the question input
|
86 |
with gr.Row():
|
87 |
+
question = gr.Textbox(label="Question", show_label=False, placeholder="Type your question and hit Enter ", scale=4)
|
88 |
+
send_btn = gr.Button(value="Send", variant="primary", scale=0)
|
89 |
+
with gr.Accordion(label="Beispiele", open=False):
|
90 |
+
#examples
|
91 |
+
examples = gr.Examples([
|
92 |
+
"Welche Versicherungen brauche ich als Student?",
|
93 |
+
"Wie melde ich einen Schaden?",
|
94 |
+
"Wie kann ich mich als Selbstständiger finanziell absichern?",
|
95 |
+
"Welche Versicherungen sollte ich für meine Vorsorge abschliessen?"
|
96 |
+
], inputs=[question], label="") #, cache_examples="lazy", fn=get_examples, outputs=[chatbot]
|
97 |
+
|
98 |
with gr.Row():
|
99 |
+
clear = gr.Button("Clear") # Add a button to clear the chat
|
100 |
|
101 |
# Define the action when the question is submitted
|
102 |
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
|
103 |
+
bot, chatbot, chatbot)
|
104 |
+
send_btn.click(add_text, [chatbot, question], [chatbot, question], queue=False).then(
|
105 |
+
bot, chatbot, chatbot)
|
106 |
# Define the action for the clear button
|
107 |
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
109 |
# Launch the Gradio demo interface
|
110 |
demo.queue().launch(share=False, debug=True)
|