Spaces:
Sleeping
Sleeping
Asaad Almutareb
commited on
Commit
•
153e9c1
1
Parent(s):
2454aa9
adjust for hf gradio
Browse files- README.md +1 -1
- app_gui.py +4 -25
- rag_app/agents/react_agent.py +6 -15
README.md
CHANGED
@@ -3,7 +3,7 @@ title: Insurance Advisor Agents PoC
|
|
3 |
emoji: 🤖
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
-
sdk:
|
7 |
python: 3.11
|
8 |
app_file: app_gui.py
|
9 |
pinned: false
|
|
|
3 |
emoji: 🤖
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
python: 3.11
|
8 |
app_file: app_gui.py
|
9 |
pinned: false
|
app_gui.py
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
from rag_app.agents.react_agent import agent_executor, llm
|
5 |
-
from rag_app.chains import user_response_sentiment_prompt
|
6 |
-
# need to import the qa!
|
7 |
-
|
8 |
-
app = FastAPI()
|
9 |
-
user_sentiment_chain = user_response_sentiment_prompt | llm
|
10 |
|
11 |
|
12 |
if __name__ == "__main__":
|
@@ -21,13 +15,6 @@ if __name__ == "__main__":
|
|
21 |
def bot(history):
|
22 |
# Obtain the response from the 'infer' function using the latest input
|
23 |
response = infer(history[-1][0], history)
|
24 |
-
#sources = [doc.metadata.get("source") for doc in response['source_documents']]
|
25 |
-
#src_list = '\n'.join(sources)
|
26 |
-
#print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
|
27 |
-
|
28 |
-
|
29 |
-
#history[-1][1] = print_this #response['answer']
|
30 |
-
# Update the history with the bot's response
|
31 |
history[-1][1] = response['output']
|
32 |
return history
|
33 |
|
@@ -35,10 +22,6 @@ if __name__ == "__main__":
|
|
35 |
def infer(question, history):
|
36 |
# Use the question and history to query the RAG model
|
37 |
#result = qa({"query": question, "history": history, "question": question})
|
38 |
-
try:
|
39 |
-
data = user_sentiment_chain.invoke({"user_reponse":question})
|
40 |
-
except Exception as e:
|
41 |
-
raise e
|
42 |
try:
|
43 |
result = agent_executor.invoke(
|
44 |
{
|
@@ -46,17 +29,15 @@ if __name__ == "__main__":
|
|
46 |
"chat_history": history
|
47 |
}
|
48 |
)
|
49 |
-
|
50 |
-
|
51 |
return result
|
52 |
except Exception:
|
53 |
raise gr.Error("Model is Overloaded, Please retry later!")
|
54 |
|
55 |
def vote(data: gr.LikeData):
|
56 |
if data.liked:
|
57 |
-
print("You upvoted this response: "
|
58 |
else:
|
59 |
-
print("You downvoted this response: "
|
60 |
|
61 |
# CSS styling for the Gradio interface
|
62 |
css = """
|
@@ -94,6 +75,4 @@ if __name__ == "__main__":
|
|
94 |
clear.click(lambda: None, None, chatbot, queue=False)
|
95 |
|
96 |
# Launch the Gradio demo interface
|
97 |
-
demo.queue().launch(share=False, debug=True)
|
98 |
-
|
99 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
+
from rag_app.agents.react_agent import agent_executor
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
if __name__ == "__main__":
|
|
|
15 |
def bot(history):
|
16 |
# Obtain the response from the 'infer' function using the latest input
|
17 |
response = infer(history[-1][0], history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
history[-1][1] = response['output']
|
19 |
return history
|
20 |
|
|
|
22 |
def infer(question, history):
|
23 |
# Use the question and history to query the RAG model
|
24 |
#result = qa({"query": question, "history": history, "question": question})
|
|
|
|
|
|
|
|
|
25 |
try:
|
26 |
result = agent_executor.invoke(
|
27 |
{
|
|
|
29 |
"chat_history": history
|
30 |
}
|
31 |
)
|
|
|
|
|
32 |
return result
|
33 |
except Exception:
|
34 |
raise gr.Error("Model is Overloaded, Please retry later!")
|
35 |
|
36 |
def vote(data: gr.LikeData):
|
37 |
if data.liked:
|
38 |
+
print("You upvoted this response: ")
|
39 |
else:
|
40 |
+
print("You downvoted this response: ")
|
41 |
|
42 |
# CSS styling for the Gradio interface
|
43 |
css = """
|
|
|
75 |
clear.click(lambda: None, None, chatbot, queue=False)
|
76 |
|
77 |
# Launch the Gradio demo interface
|
78 |
+
demo.queue().launch(share=False, debug=True)
|
|
|
|
rag_app/agents/react_agent.py
CHANGED
@@ -7,17 +7,13 @@ from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
|
|
7 |
from langchain.tools.render import render_text_description
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
-
from rag_app.structured_tools.
|
11 |
-
|
12 |
)
|
13 |
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
from rag_app.templates.react_json_with_memory_ger import template_system
|
16 |
# from innovation_pathfinder_ai.utils import logger
|
17 |
-
# from langchain.globals import set_llm_cache
|
18 |
-
# from langchain.cache import SQLiteCache
|
19 |
-
|
20 |
-
# set_llm_cache(SQLiteCache(database_path=".cache.db"))
|
21 |
# logger = logger.get_console_logger("hf_mixtral_agent")
|
22 |
|
23 |
config = load_dotenv(".env")
|
@@ -25,10 +21,6 @@ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
|
25 |
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
|
26 |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
27 |
LLM_MODEL = os.getenv('LLM_MODEL')
|
28 |
-
# LANGCHAIN_TRACING_V2 = "true"
|
29 |
-
# LANGCHAIN_ENDPOINT = "https://api.smith.langchain.com"
|
30 |
-
# LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY')
|
31 |
-
# LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT')
|
32 |
|
33 |
# Load the model from the Hugging Face Hub
|
34 |
llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
|
@@ -40,11 +32,10 @@ llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
|
|
40 |
|
41 |
|
42 |
tools = [
|
43 |
-
|
44 |
-
|
45 |
-
web_research,
|
46 |
-
ask_user
|
47 |
-
get_email
|
48 |
]
|
49 |
|
50 |
prompt = PromptTemplate.from_template(
|
|
|
7 |
from langchain.tools.render import render_text_description
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
+
from rag_app.structured_tools.structured_tools import (
|
11 |
+
google_search, knowledgeBase_search
|
12 |
)
|
13 |
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
from rag_app.templates.react_json_with_memory_ger import template_system
|
16 |
# from innovation_pathfinder_ai.utils import logger
|
|
|
|
|
|
|
|
|
17 |
# logger = logger.get_console_logger("hf_mixtral_agent")
|
18 |
|
19 |
config = load_dotenv(".env")
|
|
|
21 |
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
|
22 |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
23 |
LLM_MODEL = os.getenv('LLM_MODEL')
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Load the model from the Hugging Face Hub
|
26 |
llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
|
|
|
32 |
|
33 |
|
34 |
tools = [
|
35 |
+
knowledgeBase_search,
|
36 |
+
google_search,
|
37 |
+
#web_research,
|
38 |
+
#ask_user
|
|
|
39 |
]
|
40 |
|
41 |
prompt = PromptTemplate.from_template(
|