Spaces:
Sleeping
Sleeping
Merge pull request #15 from almutareb/add-answer-qa-chain
Browse files- .gitignore +5 -0
- app_gui.py +10 -1
- rag_app/chains/__init__.py +1 -0
- rag_app/chains/user_response_sentiment_chain.py +42 -0
.gitignore
CHANGED
@@ -164,3 +164,8 @@ cython_debug/
|
|
164 |
*.sqlite3
|
165 |
*.bin
|
166 |
*.pickle
|
|
|
|
|
|
|
|
|
|
|
|
164 |
*.sqlite3
|
165 |
*.bin
|
166 |
*.pickle
|
167 |
+
|
168 |
+
|
169 |
+
# Databases
|
170 |
+
|
171 |
+
*.db
|
app_gui.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
from fastapi import FastAPI
|
4 |
-
from rag_app.agents.react_agent import agent_executor
|
|
|
5 |
# need to import the qa!
|
6 |
|
7 |
app = FastAPI()
|
|
|
|
|
8 |
|
9 |
if __name__ == "__main__":
|
10 |
|
@@ -32,6 +35,10 @@ if __name__ == "__main__":
|
|
32 |
def infer(question, history):
|
33 |
# Use the question and history to query the RAG model
|
34 |
#result = qa({"query": question, "history": history, "question": question})
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
result = agent_executor.invoke(
|
37 |
{
|
@@ -39,6 +46,8 @@ if __name__ == "__main__":
|
|
39 |
"chat_history": history
|
40 |
}
|
41 |
)
|
|
|
|
|
42 |
return result
|
43 |
except Exception:
|
44 |
raise gr.Error("Model is Overloaded, Please retry later!")
|
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
from fastapi import FastAPI
|
4 |
+
from rag_app.agents.react_agent import agent_executor, llm
|
5 |
+
from rag_app.chains import user_response_sentiment_prompt
|
6 |
# need to import the qa!
|
7 |
|
8 |
app = FastAPI()
|
9 |
+
user_sentiment_chain = user_response_sentiment_prompt | llm
|
10 |
+
|
11 |
|
12 |
if __name__ == "__main__":
|
13 |
|
|
|
35 |
def infer(question, history):
|
36 |
# Use the question and history to query the RAG model
|
37 |
#result = qa({"query": question, "history": history, "question": question})
|
38 |
+
try:
|
39 |
+
data = user_sentiment_chain.invoke({"user_reponse":question})
|
40 |
+
except Exception as e:
|
41 |
+
raise e
|
42 |
try:
|
43 |
result = agent_executor.invoke(
|
44 |
{
|
|
|
46 |
"chat_history": history
|
47 |
}
|
48 |
)
|
49 |
+
|
50 |
+
|
51 |
return result
|
52 |
except Exception:
|
53 |
raise gr.Error("Model is Overloaded, Please retry later!")
|
rag_app/chains/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from rag_app.chains.user_response_sentiment_chain import user_response_sentiment_prompt
|
rag_app/chains/user_response_sentiment_chain.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.prompts import PromptTemplate
|
2 |
+
|
3 |
+
|
4 |
+
user_response_sentiment_template = """
|
5 |
+
You will be given a user response to an agent.
|
6 |
+
=================
|
7 |
+
{user_reponse}
|
8 |
+
====================
|
9 |
+
You must determine if the user has has their questions answered.
|
10 |
+
If the user seems satisfied respond saying "1" or "0" ONLY.
|
11 |
+
|
12 |
+
Examples:
|
13 |
+
================
|
14 |
+
|
15 |
+
Example 1
|
16 |
+
USER: Great Work!
|
17 |
+
YOUR RESPONSE: 1
|
18 |
+
=================
|
19 |
+
|
20 |
+
USER: I still need help!
|
21 |
+
YOUR RESPONSE: 0
|
22 |
+
Example 2
|
23 |
+
================================
|
24 |
+
|
25 |
+
USER: I don't understand what you mean
|
26 |
+
YOUR RESPONSE: 0
|
27 |
+
Example 3
|
28 |
+
================================
|
29 |
+
|
30 |
+
USER: That makes sense!
|
31 |
+
YOUR RESPONSE: 1
|
32 |
+
Example 4
|
33 |
+
================================
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
"""
|
38 |
+
|
39 |
+
user_response_sentiment_prompt = PromptTemplate.from_template(user_response_sentiment_template)
|
40 |
+
|
41 |
+
|
42 |
+
# llm_chain = prompt | llms
|