|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Dict, Optional, Sequence, Set, Tuple, Union |
|
|
|
import torch |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from ..data import get_dataset, get_template_and_fix_tokenizer |
|
from ..extras.misc import get_current_device |
|
from ..hparams import get_infer_args, get_train_args |
|
from ..model import load_model, load_tokenizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from datasets import Dataset |
|
from peft import LoraModel |
|
from transformers import PreTrainedModel |
|
|
|
|
|
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None: |
|
state_dict_a = model_a.state_dict() |
|
state_dict_b = model_b.state_dict() |
|
assert set(state_dict_a.keys()) == set(state_dict_b.keys()) |
|
for name in state_dict_a.keys(): |
|
if any(key in name for key in diff_keys): |
|
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-3, atol=1e-4) is False |
|
else: |
|
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-3, atol=1e-4) is True |
|
|
|
|
|
def check_lora_model(model: "LoraModel") -> Tuple[Set[str], Set[str]]: |
|
linear_modules, extra_modules = set(), set() |
|
for name, param in model.named_parameters(): |
|
if any(module in name for module in ["lora_A", "lora_B"]): |
|
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
elif "modules_to_save" in name: |
|
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1]) |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
else: |
|
assert param.requires_grad is False |
|
assert param.dtype == torch.float16 |
|
|
|
return linear_modules, extra_modules |
|
|
|
|
|
def load_train_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel": |
|
model_args, _, _, finetuning_args, _ = get_train_args(kwargs) |
|
tokenizer = load_tokenizer(model_args)["tokenizer"] |
|
return load_model(tokenizer, model_args, finetuning_args, is_trainable=True, add_valuehead=add_valuehead) |
|
|
|
|
|
def load_infer_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel": |
|
model_args, _, finetuning_args, _ = get_infer_args(kwargs) |
|
tokenizer = load_tokenizer(model_args)["tokenizer"] |
|
return load_model(tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead) |
|
|
|
|
|
def load_reference_model( |
|
model_path: str, |
|
lora_path: Optional[str] = None, |
|
use_lora: bool = False, |
|
use_pissa: bool = False, |
|
is_trainable: bool = False, |
|
add_valuehead: bool = False, |
|
) -> Union["PreTrainedModel", "LoraModel"]: |
|
if add_valuehead: |
|
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( |
|
model_path, torch_dtype=torch.float16, device_map=get_current_device() |
|
) |
|
if not is_trainable: |
|
model.v_head = model.v_head.to(torch.float16) |
|
|
|
return model |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float16, device_map=get_current_device() |
|
) |
|
if use_lora or use_pissa: |
|
model = PeftModel.from_pretrained( |
|
model, lora_path, subfolder="pissa_init" if use_pissa else None, is_trainable=is_trainable |
|
) |
|
for param in filter(lambda p: p.requires_grad, model.parameters()): |
|
param.data = param.data.to(torch.float32) |
|
|
|
return model |
|
|
|
|
|
def load_train_dataset(**kwargs) -> "Dataset": |
|
model_args, data_args, training_args, _, _ = get_train_args(kwargs) |
|
tokenizer_module = load_tokenizer(model_args) |
|
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) |
|
dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module) |
|
return dataset_module["train_dataset"] |
|
|
|
|
|
def patch_valuehead_model(): |
|
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]) -> None: |
|
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} |
|
self.v_head.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
|
|
AutoModelForCausalLMWithValueHead.post_init = post_init |
|
|